

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2007 by Glenn Johnson and Tony Northrup

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by

any means without the written permission of the publisher.

Library of Congress Control Number 2006932076

ISBN-13: 978-0-7356-2334-7

ISBN-10: 0-7356-2334-1

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information

about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-

national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments

to tkinput@microsoft.com.

Microsoft, Active Directory, Internet Explorer, MSDN, MSN, PGR, Segoe, Visual Basic, Visual Studio, Visual

Web Developer, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries. Other product and company names mentioned herein

may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and

events depicted herein are fictitious. No association with any real company, organization, product, domain

name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-

out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,

or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly

by this book.

Acquisitions Editor: Ken Jones

Project Editor: Jenny Moss Benson

Editorial Production: nSight, Inc.

Copy Editor: Evan Gelder

Technical Reviewer: Thomas Keegan

Indexer: Nancy Guenther

Body Part No. X12-48741

http://tkinput@microsoft.com

About the Authors

Glenn Johnson

Glenn Johnson is a professional trainer, consultant, and developer

whose experience spans the past 20 years. As a consultant and

developer, he has worked on several large projects, the latest being

a successful conversion of a SmallTalk/GemStone system to C#/

Microsoft SQL Server for a very large customer. This is Glenn’s

third .NET-related book, and he has also developed courseware

for and taught classes in many countries on Microsoft ASP.NET,

Visual Basic .NET, C#, and the .NET Framework.

Glenn holds the following Microsoft Certifications: MCT, MCPD, MCTS, MCAD,

MCSD, MCDBA, MCP + Site Building, MCSE + Internet, MCP + Internet, and MCSE.

You can find Glenn’s Web site at http://GJTT.com.

Tony Northrup

Tony Northrup, MCTS, MCSE, CISSP, and Microsoft MVP, is a

consultant and author. He has written more than a dozen

books covering Windows networking, security, and develop

ment. Among other titles, Tony is coauthor of the MCSA/MCSE

Self-Paced Training Kits for Exams 70-536 and 70-330/340.

When he’s not consulting or writing, Tony enjoys cycling, hik

ing, and nature photography. Tony lives in Phillipston, Massa

chusetts, with his wife, Erica, his cat, Sam, and his dog, Sandi.

You can learn more about Tony by visiting his Web site at http://www.northrup.org.

http://ASP.NET
http://gjtt.com/
http://www.northrup.org/

Chapter 1

Introducing the ASP.NET 2.0 Web
Site

Microsoft Visual Studio 2005 and ASP.NET 2.0 represent a major release for

Microsoft. If you have previous experience with Visual Studio products, you will see

the differences immediately when you attempt to create your first Web site. Even if

you are new to Visual Studio 2005 and ASP.NET 2.0, you will be able to immediately

take advantage of the productivity enhancements.

This chapter starts by introducing the Web site players (Web server, Web browser,

and Hypertext Transfer Protocol [HTTP]). It explores the architecture of an ASP.NET

Web site and then shows the various ways that you can create a Web site. After that,

you will learn about some of the Web site configuration options in Visual Studio

2005.

Exam objectives in this chapter:

■ Program a Web application.

❑ Avoid performing unnecessary processing on a round trip by using a page’s

IsPostBack property.

■ Create and configure a Web application.

❑ Create a new Web application.

❑ Add Web Forms pages to a Web application.

■ Configure settings for a Web application.

❑ Configure system-wide settings in the Machine.config file.

❑ Configure settings for a Web application in the application’s Web.config

file.

❑ Manage a Web application’s configuration by using the Web Site Adminis

tration Tool.

■ Optimize and troubleshoot a Web application.

❑ Troubleshoot a Web application by using ASP.NET Trace.

2

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Lessons in this chapter:

■ Lesson 1: Understanding the Players . 3

■ Lesson 2: Creating a Web Site and Adding New Web Pages 17

■ Lesson 3: Working with Web Configuration Files . 31

■ Lesson 4: Using ASP.NET Trace to Explore Web Pages 37

Before You Begin
To complete this chapter, you must:

■ Be familiar with Microsoft Visual Basic or C#.

■ Have Microsoft Windows XP, Internet Information Services (IIS) 5.1, and Visual

Studio 2005 installed with Microsoft SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Understand how to make assemblies available to other applications.

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

Real World

Glenn Johnson

It’s easier to learn how to develop Web clients once you understand who the

players are. I have seen many people attempt to learn Web development without

learning the roles of the Web browser, HTTP, and the Web server. It’s not a pretty

sight.

Lesson 1: Understanding the Players

Lesson 1: Understanding the Players

3

It’s important to get an understanding of the roles of the Web server, Web browser,

and HTTP before starting your Web development. The typical communication pro

cess can be generalized into the following steps:

1. The Web browser initiates a request for a Web server resource.

2. HTTP is used to send the GET request to the Web server.

3. The Web server processes the request.

4. The Web server sends a response to the Web browser. HTTP protocol is used to

send the HTTP response to the Web browser.

5. The Web browser processes the response, displaying the Web page.

6. The user enters data and performs an action, such as clicking a Submit button

that causes the data to be sent back to the Web server.

7. HTTP is used to POST the data back to the server.

8. The Web server processes the data.

9. The Web server sends the response back to the Web browser.

10. HTTP is used to send the HTTP response to the Web browser.

11. The Web browser processes the response, displaying the Web page.

This section gives a brief description of how the Web browser exchanges communica

tions with the Web server via HTTP. It also describes the responsibilities of both the

Web browser and Web server.

After this lesson, you will be able to:

■ Describe the Web server’s role in responding to requests for resources.

■ Describe the Web browser’s role in collecting and presenting data to the user.

■ Describe HTTP’s role in communicating to the Web server.

■ Describe how HTTP verbs are used to request resources from the Web server.

■ Describe the status-code groups that are implemented in HTTP.

■ Describe Distribute Authoring and Versioning.

■ Describe PostBack, the common method of sending data to the Web server.

■ Describe some methods for troubleshooting HTTP.

Estimated lesson time: 30 minutes

4

Chapter 1 Introducing the ASP.NET 2.0 Web Site

The Web Server’s Role

Let’s start with the Web server. The original Web servers were responsible for receiving

and handling requests from the browsers via HTTP. Each Web server handled the

request and sent a response back to the Web browser. After that, the Web server closed

the connection and released all resources that were involved in the request. All

resources were released because the Web server needed to be able to handle thou

sands of requests per minute, and the original Web pages were simple, static HTML

pages. The Web environment was considered to be ―stateless‖ because no data was

held at the Web server between Web browser requests, and because the connection

was closed after the response was sent (see Figure 1-1).

Web Browser

GET Default.html

Display Page

Client initiates

communications with

page request

Server responds

with page

Web Server

1. Process request

2. Send response

 and close the

 connection

Figure 1-1 A simple request/response between Web browser and Web server in a stateless

environment.

Today’s Web servers deliver services that go far beyond the original Web servers. In

addition to serving static HTML files, the Web servers can also handle requests for

pages that contain code that will execute at the server; the Web servers will respond

with the results of code execution, as shown in Figure 1-2. Web servers also have the

ability to store data across Web page requests, which means that Web pages can be

connected to form Web applications. Because many Web sites are set up as Web appli

cations containing many Web pages, the idea of a Web server delivering a single page

to the Web browser and closing the connection is rather outdated. Web servers now

implement ―keep alive‖ features for connections that make the Web servers keep the

connections to the Web browsers open for a period of time with anticipation of addi

tional page requests from a Web browser.

Web Browser

GET Default.aspx

Display Page

Client initiates

communications with

page request

Server responds

with page

Lesson 1: Understanding the Players

Web Server

1. Process request

2. Execute server-side

 code

3. Store session data

 e.g., CustomerId=5234

4. Send result response

5

Figure 1-2 Web servers now store state between page requests to enable the creation of Web

applications.

The Web Browser’s Role

The Web browser provides a platform-independent means of displaying Web pages

that were written with HTML. Platform-independent means that HTML was designed

to be able to render within any operating system while placing no constraint on the

window size. HTML was designed to ―flow,‖ wrapping text as necessary to fit into the

browser window. The Web browser also needs to display images and respond to

hyperlinks. Each Web page request to the Web server results in the Web browser

clearing the browser screen and displaying the new Web page.

Although the Web browser’s role is simply to present data and collect data, many new

client-side technologies enable today’s Web browsers to execute code such as Java-

Script and to support plug-ins which improve the user’s experience. Technologies

such as Asynchronous JavaScript and XML (AJAX) allow the Web browsers to talk to

the Web servers without clearing the existing Web pages from the browser window.

These technologies make the user experience much better and more robust than the

user experience provided by the original Web browsers.

Understanding Hypertext Transfer Protocol’s Role

HTTP is a text-based communication protocol that is used to request Web pages from

the Web server and send responses back to the Web browser. HTTP messages are

6

Chapter 1 Introducing the ASP.NET 2.0 Web Site

typically sent between the Web server and Web browser using port 80, or, when

using secure HTTP (HTTPS), port 443.

MORE INFO HTTP/1.1 Specification

For more information on HTTP/1.1, see the HTTP/1.1 specification at http://www.w3.org/Protocols/

rfc2616/rfc2616.html.

When a Web page is requested, a textual command like the following is sent to the

Web server:

GET /default.aspx HTTP/1.1

Host: www.northwindtraders.com

Notice that the first line contains the method, also known as a verb or a command,

called GET, and is followed by the Uniform Resource Locator (URL) of the Web page

to be retrieved, which is followed by an indicator of the HTTP version to be used. The

method indicates what action is to be performed by the Web server using the URL

that follows the method. Table 1-1 contains a list of some of the common HTTP meth

ods with a description of their uses. Note that, if Distributed Authoring and Versioning

(DAV) is enabled on the Web site, many more verbs will be available, such as LOCK

and UNLOCK.

The second line identifies the name of the host that may be used by the Web server if

the Web server is hosting more than one Web site. This process is known as using

host headers to identify the Web site that will handle the request(s).

Table 1-1 Common HTTP/1.1 Methods

HTTP Description

Method

OPTIONS Used by client applications to request a lists of all supported verbs.

Checks to see if a server allows a particular verb before wasting net

work bandwidth trying to send an unsupported request.

GET Gets a URL from the server. A GET request for a specific URL, say,

/test.htm, retrieves the test.htm file. Data retrieved using this verb is

typically cached by the browser. GET also works with collections,

such as those in directories that contain collections of files. If you

request a directory, the server can be configured to return a default

file, such as index.html, that may be representative of the directory.

http://www.w3.org/Protocols/

Table 1-1 Common HTTP/1.1 Methods

HTTP Description

Method

Lesson 1: Understanding the Players

7

HEAD

POST

PUT

DELETE

TRACE

Retrieves the meta information for a resource. This information is typ

ically identical to the meta information sent in response to a GET

request, but the HEAD verb never returns the actual resource. The

meta information is cacheable.

Used to create a new, dynamically named resource. Data retrieved

using this verb is typically not cached.

Allows a client to directly create a resource at the indicated URL on

the server. The server takes the body of the request, creates the file

specified in the URL, and copies the received data to the newly cre

ated file. If the file exists and is not locked, the content of the file will

be overwritten.

Used to delete a resource at the Web server. Requires write permis

sions on the directory.

Used for testing or diagnostics; allows the client to see what is being

received at the other end of the request chain. Responses to this

method are never cached.

CONNECT Reserved for use with a proxy that can dynamically switch to being a

tunnel, such as Secure Socket Layer (SSL) protocol.

DEBUG Is not defined in the HTTP/1.1 specification, but is used to start

ASP.NET debugging. Informs Visual Studio 2005 of the process that

the debugger will attach to.

Notice that Web-browser-to-Web-server communication is referred to as a request. In

ASP.NET, the Request object represents the Web browser’s communications to the

Web server asking for a resource.

What Is Distributed Authoring and Versioning?

Distributed Authoring and Versioning (DAV) is a set of extensions to HTTP/1.1

that simplifies Web site development when working in a team scenario. DAV is

an open standard and is available on numerous platforms. DAV provides the

ability to lock and unlock files plus the ability to designate versions.

http://ASP.NET

8

Chapter 1 Introducing the ASP.NET 2.0 Web Site

DAV is built directly on HTTP/1.1, so no other protocols, such as File Transfer Pro

tocol (FTP) or Server Message Block (SMB), are required. DAV also provides the

ability to query the Web server for various resource properties such as file names,

time stamps, and sizes. DAV also gives the developers the ability to perform

server-side file copying and moving. For example, you can use the HTTP GET and

PUT verbs to retrieve files from the Web servers and save them to different loca

tions, or you can use the DAV’s COPY verb to simply tell a server to copy the file.

The communication from the Web server back to the Web browser is commonly

referred to as the response. In ASP.NET this is represented as the Response object.

When the Web server responds to a request, the communication is typically in the fol

lowing text-based format:

HTTP/1.1 200 OK

Server: Microsoft-IIS/6.0

Content-Type: text/html

Content-Length: 38

<html><body>Hello, world.</body><html>

The first line contains the protocol and version information, plus a status-code and

reason. The three-digit status codes are grouped as shown in Table 1-2.

Exam Tip Even if you don’t memorize every status code, it’s helpful to know the five status-

code groupings in Table 1-2.

Table 1-2 Status-Code Groups

Status-Code Description

Group

1xx Informational: Request received, continuing to process.

2xx Success: The action was successfully received, understood, and

accepted.

3xx Redirect Command: Further action must be taken in order to com

plete the request.

4xx Client Error: The request has a syntax error or the server does not

know how to fulfill the request.

5xx Server Error: The server failed to fulfill a request that appears to be

valid.

Lesson 1: Understanding the Players

9

In addition to the status-code groups, HTTP/1.1 defines unique status-codes and rea

sons. (A reason is nothing more than a very brief description of the status-code.) Table

1-3 shows a list of the common status-codes and reasons. Reason text can be modified

without breaking the protocol.

Table 1-3 Common Status-Codes and Reasons

Status-Code Reason

100

200

201

300

301

302

400

401

403

404

407

408

413

500

501

Continue

OK

Created

Multiple Choices

Moved Permanently

Found

Bad Request

Unauthorized

Forbidden

Not Found

Proxy Authentication Required

Request Time-out

Request Entity Too Large

Internal Server Error

Not Implemented

The second line of the response indicates the type of Web server. The third line (Con

tent-Type) indicates the type of resource that is being sent to the Web browser. This

indicator is in the form of a Multipurpose Internet Mail Extensions (MIME) type. In this

case, the file is a static HTML text file. The MIME type is a two-part designator ―type/

subtype,‖ in which the first part is the resource type and the second part is the

resource subtype. Some common types are shown in Table 1-4.

10

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Table 1-4 Common MIME Types

MIME Type Description

text Textual information. No special software is required to get the full

meaning of the text, aside from support for the indicated character

set. One subtype is plain, which means that the text can be read

without requiring additional software. Other subtypes are html and

xml, which indicate the appropriate file type(s).

image Image data. Requires a display device (such as a graphical display

or a graphics printer) to view the information. Subtypes are defined

for two widely used image formats, jpeg and gif.

audio Audio data. Requires an audio output device (such as a speaker or

headphones) to ―hear‖ the contents. An initial subtype called basic

is defined for this type.

video Video data. Requires the capability to display moving images, typi

cally including specialized hardware and software. An initial sub

type called mpeg is defined for this type.

application Other kinds of data, typically either uninterpreted binary data or

information to be processed by an application. The subtype, called

octet-stream, is to be used in the case of uninterpreted binary data,

in which the simplest recommended action is to offer to write the

information into a file for the user. The PostScript subtype is also

defined for the transport of PostScript material.

MORE INFO MIME Types

The registry contains a list of MIME types/subtypes at the following location:

HKEY_CLASSES_ROOT\MIME\Database\Content Type.

After the content-length line, the response message is returned. This message is based

on the MIME type. The browser attempts to handle the message based on its MIME type.

Submitting Form Data to the Web Server

The HTML <form> tag can be used to create a Web form that collects data and sends

the data to the Web server. A typical use of <form> tag is as follows.

<form method="POST" action = "getCustomer.aspx" >

Enter Customer ID:

<input type="text" name="Id">

<input type="submit" value="Get Customer">

</form>

Lesson 1: Understanding the Players

11

This form prompts for a Customer ID, displays a text box that collects the desired cus

tomer ID, and also displays a submit button that initiates the sending of data to the

Web server. The method of the form indicates the HTTP verb to use when sending the

data to the server. The action is the relative URL of the resource that the data will be

sent to.

There are two HTTP methods that can be used to submit the form data back to the

Web server: GET and POST. When the GET verb is used, the QueryString containing

the data is appended to the URL. The QueryString is a collection of key=value state

ments, separated by ampersand (&) characters that can be passed to the Web server

by concatenating a question mark (?) to the end of the URL, and then concatenating

the QueryString as follows:

GET /getCustomer.aspx?Id=123&color=blue HTTP/1.1

Host: www.northwindtraders.com

In this example, a GET request is made to the Web server for a Web page called get-

Customer.aspx on the root of the Web site, and the QueryString contains the data that

follows the question mark (?). An advantage to using the GET verb is that the com

plete URL and QueryString can be seen and modified in the address bar of the Web

browser as needed. Keep in mind that, depending on the scenario, this could also be

a disadvantage. The complete URL and QueryString are easy to save as a unit. For

example, you can bookmark a Web page that has data that is included in the Query-

String. One disadvantage is that the QueryString is limited in size by the Web browser

and Web server being used. For example, when using Microsoft Internet Explorer and

IIS, the limit is 1024 characters. Another consideration is that you may not want to

allow a user to type the URL and QueryString directly into the address bar without

navigating through other Web pages first.

When the POST verb is used to submit data back to the Web server, the data is placed

into the message body as follows:

POST /getCustomer.aspx HTTP/1.1

Host: www.northwindtraders.com

Id=123&color=blue

12

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Using the POST verb removes the size constraint on the data. We posted more than 10

megabytes of data to see if the Web server would accept the data. It worked, but send

ing that much data across the Internet can cause other problems, primarily band

width-related, such as timeout errors and performance problems. The POST verb does

not allow the user to simply type the data, because this data is hidden in the message

body. In most scenarios, using the POST verb is the more desirable way to send data

to the Web server.

Sending data back to the server is often referred to as a PostBack to the server.

Although its name comes from the POST verb, it is possible to perform a PostBack

using the GET method described above. An ASP.NET Web page contains a property

called IsPostBack that is used to determine if data is being sent back to the Web server

or if the Web page is simply being requested.

HTTP Troubleshooting

You can easily view the exchange of HTTP messages by using a network sniffer. The

sniffer captures all packets between the Web browser and the Web server, and you can

simply view the packet data to read messages such as the requests and responses

described in this section.

Real World

Glenn Johnson

I always keep Microsoft Network Monitor, which is a network packet sniffer that

is included with Microsoft Server Opererating Systems and Microsoft Systems

Management Server (SMS), installed on my computer so I can readily run this

application to see the packet-by-packet conversation between my computer and

other computers on the network. This is probably the best way to understand

what’s happening because you see the raw data packets that were exchanged.

Another tool that you can use for HTTP diagnostics is Telnet. Telnet is nothing more

than a terminal emulator that sends and receives textual data on port 23, but you can

specify port 80 to communicate to the Web server. With Telnet, you can type the

HTTP commands and view the results.

Lesson 1: Understanding the Players

13

There are also many applications you can download from the Internet to troubleshoot

and analyze HTTP. Simply type HTTP as the keyword in a search on the site http://

www.download.com to get a list of such applications.

Quick Check

1. What protocol is used to communicate between the Web browser and the

Web server?

2. In ASP.NET, what does the Request object represent?

3. In ASP.NET, what does the Response object represent?

Quick Check Answers

1. HTTP

2. The Request object represents the communication from the Web browser to

the Web server.

3. The Response object represents the communication from the Web server to

the Web browser.

Lab: Exploring HTTP

In this lab, you explore the HTTP by using Telnet, which is the terminal emulation

application that is built into Windows XP.

� Exercise 1: Starting and Configuring Telnet

In this exercise, you start Telnet and configure it to work with HTTP.

1. Open a command prompt. Do so by selecting Start | All Programs | Accessories

| Command Prompt.

2. Clear the screen. Type the following command to clear the screen:

CLS

3. Start Telnet. In the command prompt window, type the following command to

start the Telnet client:

Telnet.exe

14

Chapter 1 Introducing the ASP.NET 2.0 Web Site

4. Configure Telnet to echo type characters. Type the following command into the

Telnet window, which will cause locally typed characters to be displayed while

you type them:

set localecho

Telnet will respond with the following:

Local echo on

5. Set carriage return and line feed to On. Type the following command to instruct

Telnet that it should treat the Enter key as a combination of carriage return and

line feed.

set crlf

Telnet will respond with the following:

New line mode - Causes return key to send CR & LF

� Exercise 2: Communicating with a Web Site

In this exercise, you connect to a Web site, request the default page, and observe the

result.

NOTE Take your time

In this section, if you mistype a command, you will need to start over, so take your time

entering each command.

1. In this exercise, you will open a connection to a Web site. Type the following

command into the Telnet command window to open a connection to GJTT.com

on port 80:

o GJTT.com 80

The Web server responds with the following:

Connecting To GJTT.com...

Note that this Telnet will not indicate that you are indeed connected.

2. Press the Enter key until the cursor is positioned on the next line.

3. Attempt to GET the default page. Type the following lines. After typing the sec

ond line, press the Enter key two times; this indicates the end of message to the

Web server.

http://GJTT.com..

GET / HTTP/1.1

Host: GJTT.com

Lesson 1: Understanding the Players

15

After pressing the Enter key two times, you will see the result shown in Figure 1

3. Notice that the status-code is 302 with a reason of Object Moved. The message

body contains HTML with a hyperlink to the new location.

Figure 1-3 The response is a result code that indicates a redirect.

4. Try other sites. After pressing the Enter key, you will be back at the Telnet com

mand prompt. Repeat the steps in this exercise to connect to other Web sites.

Lesson Summary

■ The Web server is responsible for accepting a request for a resource and sending

a response.

■ The Web browser is responsible for displaying data to the user, collecting data

from the user, and sending data to the Web server.

■ HTTP is a text-based communication protocol that is used to communicate

between Web browsers and Web servers, using port 80.

■ Secure HTTP (HTTPS) uses port 443.

■ Each HTTP command contains a method that indicates the desired action. Com

mon methods are GET and POST.

■ Sending data to the Web server is commonly referred to as a PostBack.

■ You can troubleshoot HTTP by using the Telnet application or a packet sniffer.

Lesson 2: Creating a Web Site and Adding New Web Pages

Lesson 2: Creating a Web Site and Adding New Web

Pages

17

This lesson presents methods that will help you create a new Web site using Visual

Studio 2005. When you create a new Web site, you will be presented with options that

are important for you to understand. You will learn how Visual Studio 2005 makes it

easy to create the new Web site and add new Web pages.

After this lesson, you will be able to:

■ Create a new Web site within Visual Studio 2005.

■ Add new Web pages, which are also known as Web Forms, to a Web site.

Estimated lesson time: 60 minutes

Understanding the Visual Studio 2005 Web Site Types

Before creating your first Web site in Visual Studio 2005, let’s look at the general archi

tecture of a Web site. In Visual Studio 2005, the project structure has been changed to

more accurately reflect the way Web Applications are typically constructed. Web

projects are now called ―Web Sites.‖ You now have several options for running and

testing your Web site, based on the type of Web site that you have. A new Web site can

be file-based, FTP-based, local HTTP-based, or remote HTTP-based. These options

simplify the system requirements on the developer’s machine. Listed below is a

description of each of the options.

NOTE .NET 2.0

The Web site types are new in .NET 2.0.

■ File The file-based Web site consists of a folder, or folder structure, that con

tains all of the files for the Web site. This Web site uses the lightweight ASP.NET

development server that is included in Visual Studio 2005, and does not use or

require IIS on the local machine.

■ FTP The FTP-based Web site is used when you want to use FTP to manage the

files on a local or remote Web site. This option is more frequently used when your

Web site is hosted on a remote computer and your access to the files and folders

on your Web site is via FTP instead of through Front Page Server Extensions.

18

Chapter 1 Introducing the ASP.NET 2.0 Web Site

■ Local HTTP The local HTTP-based Web site is used when you are working with

IIS on your local machine. This Web site may be configured at the root of the IIS

Web Server, or in a virtual directory that is configured as an application.

■ Remote HTTP The remote HTTP-based Web site is used when you have a

remote site that is hosted on a remote server and gives you access to your Web

files via Front Page Server Extensions.

The Visual Studio 2005 Solution Files

When a Web site is created, a solution file (.sln) and a hidden solution user options

file (.suo) are created. By default, these files are created in the My Documents\Visual

Studio 2005\Projects folder. The solution file is a text file that contains information

such as the following:

■ A list of the projects that are to be loaded into Visual Studio 2005

■ A list of project dependencies

■ Microsoft Visual SourceSafe information

■ A list of add-ins that are available

The solution user options file is a binary file that contains various user settings related

to the Integrated Development Environment (IDE), such as the following:

■ The task list

■ Debugger break points and watch window settings

■ Visual Studio window locations

Note that the solution files are not located in your Web site’s folder because they are

Visual Studio 2005–specific and are not required in the deployed Web site. Also, a solu

tion may contain many Web sites and Visual Studio projects, so it’s best to keep the solu

tion files in an independent folder. Solution files also can be developer-specific, meaning

that developers may want to configure solution files based on their preferences.

Looking at the ASP.NET Page Structure

When an ASP.NET Web page is created, it must have an .aspx extension. The typical

Web page is composed of three sections: page directives, code, and page layout. These

sections are defined as follows:

Lesson 2: Creating a Web Site and Adding New Web Pages

19

■ Page Directives This section is used to set up the environment, specifying how

the page should be processed. For example, this is where you can import

namespaces and load assemblies.

■ Code This section contains code to handle events from the page or its controls.

Code can be placed in a <script> tag. By default, script blocks contain client-side

code but they may be designated as being server-side code by including the

runat="server" attribute in the <script> tag. As a side note, code can also be con

tained in attached files, called code-behind files. All page code is compiled prior

to execution. In addition, all pages can be precompiled to an assembly if the

assembly is the only file that needs to be deployed.

■ Page Layout The page layout is the HTML of the page, which includes the

HTML body and its markup. The body can contain client and server controls as

well as simple text.

A simple Web page may look like the following.

<!—page directives-->

<%@ Page Language="VB" %>

<!--script-->

<script runat="server">

 Private Sub SayHi(ByVal sender As Object, ByVal args As EventArgs)

Response.Write("Hello " + txtName.Value)

 End Sub

</script>

<!--layout-->

<html>

<head>

 <title>Say Hi Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <input runat="server" id="txtName" type="text" />

 <input runat="server" id="btnSayHi" type="button"

value="Say Hi" onserverclick="SayHi" />

 </form>

</body>

</html>

Notice the runat="server" attribute that is used. For the script block, this indicates that

the code will run at the server. For the form and its controls, this indicates that

ASP.NET will create server-side objects to match these HTML tags. A server-side object

is capable of running server-side code and raising server-side events.

20

Chapter 1 Introducing the ASP.NET 2.0 Web Site

In-Line versus Code-Behind Programming Model

The previous Web page contains all the code and markup in a single file. This is called

in-line programming. Although this model is simple, and might be a logical model to

choose when you are converting an ASP application (that also has all of its code in a

single file) to ASP.NET, new applications should always be implemented with the

code-behind programming model. The code-behind programming model is always

the preferred model because it provides clean separation between the client-side code

and the server-side code.

The code-behind programming model adds another file to the Web page that is called

the code-behind page. The code-behind page contains the server-side code, thus sep

arating server-side code from the client-side code and markup.

NOTE .NET 2.0

Partial classes are new to ASP.NET version 2.0. The implementation of partial classes allowed the

dynamic compilation to change in ASP.NET 2.0.

The code-behind files in ASP.NET 2.0 use a new language feature called partial classes,

which allow code-behind files to be dynamically compiled with their associated ASPX

pages into a single class type. This means you no longer need to declare member vari

ables in the code-behind page for each control. This greatly simplifies maintenance of

sites that use this code-separation technique.

Dynamic Web Site Compilation

ASP.NET 2.0 implements a new dynamic Web site compilation model. In ASP.NET

2.0, the code is not compiled until it is required by a user accessing your site. With

dynamic compilation, the Web site doesn’t produce a deployable executable assem

bly as its output when it is built in Visual Studio 2005. Instead, each page is compiled

when it is requested. The compiled page has a dependency on the source file’s time

stamp. If the source code is changed, the page is recompiled the next time it is

requested. Dynamic compilation offers the following advantages:

■ The entire application does not need to be recompiled every time a change is

made to a single page or component, which is especially great news to develop

ers of large Web sites. Remember that each page is recompiled as needed based

on the timestamp of the source code files.

http://ASP.NET

Lesson 2: Creating a Web Site and Adding New Web Pages

21

■ Pages that contain compile errors do not prevent other pages in the Web site

from running. This means that you can test Web sites that contain pages still in

development.

In Visual Studio 2005, when you compile a Web site, the Web site still gets built, but

there is now verification that all the pages and their dependencies can be compiled. No

assembly is created for running the Web site. Compiling in Visual Studio 2005 is more

rigorous than in earlier versions of Visual Studio .NET because Visual Studio now verifies

that the code can be compiled and finds errors in the markup syntax and Web.config file.

Creating a Web Site

We mentioned that there are four ways to create a Web site. This section demonstrates

the creation of each of the Web site types: file, FTP, local HTTP, and remote HTTP. The

basic steps for creating a new Web site in Visual Studio 2005 are as follows:

1. In Visual Studio 2005, use the menus to request the creation of a new Web site.

2. Select the Web site type, the default programming language, and the location.

3. Click OK. Enter additional information if prompted.

You can create a Web Site application by opening Visual Studio 2005 and selecting

File | New | Web Site. The New Web Site dialog box appears, as shown in Figure 1-4.

Figure 1-4 The New Web Site dialog box contains properties for setting the Web site type, location,

and default language.

Creating a File-Based Web Site

In the New Web Site dialog box, change the Location drop-down list to File System,

and type a valid location on a local drive. After that, select the default language for the

Web site and click OK.

22

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Visual Studio 2005 creates the folder for your site and a new page named

Default.aspx. When the new page is created, Visual Studio 2005 displays the page in

HTML Source view, where you can see the page’s HTML elements.

Creating an FTP-Based Web Site

In the New Web Site dialog box, select FTP from the Location drop-down list, and

type a valid local or remote location that uses FTP to manage the files. After that, select

the default language for the Web site and click OK. You will be prompted for FTP

parameters, as shown in Figure 1-5.

Figure 1-5 Configure the FTP parameters for Web site access.

Active Mode versus Passive Mode

FTP is TCP-based (has a connection) and has no UDP (connectionless) compo

nent. FTP requires two ports for communication: a command port and a data

port. Port 21 is typically the command port at the server; port 20 is the typical

data port when using active mode FTP.

Active mode FTP communications is the default and starts with the client selec

tion of two ports: n and n+1. The client will use port n to initiate communica

tions to port 21 of the server. When the server responds, the client sends a port

command, which instructs the server of the port to use for data communica

tions, as shown in Figure 1-6. It’s the server that initiates data communications,

from port 20 to the client’s data port (n+1). If the client has a firewall installed,

the server may be blocked from initiating communications to the client on the

data port.

Client

Port n

Port n + 1

Lesson 2: Creating a Web Site and Adding New Web Pages

Active Mode FTP

Server

Client initiates
command port

communications
Port 21

Port 20
Server initiates data

port communications

23

Figure 1-6 Active mode requires that the server initiate the connection on the data port.

Passive-mode FTP communications can be used to correct the problem with

active-mode communications. Passive mode starts with the client selection of

two ports: n and n+1. The client will use port n to initiate communications to

port 21 of the server. When the server responds, the client sends a pasv com

mand to the server. The server selects a random port p to use for data commu

nications and sends the port number to the client. The client then initiates

communications on the data port (n+1) to the server’s data port (p), as shown in

Figure 1-7.

Passive Mode FTP

Client

Port n

Port n + 1

Client initiates

command port

communications

Client initiates data

port communications

Server

Port 21

Port p

Figure 1-7 When using passive mode, the client initiates communications on the command

and data ports.

24

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Notice that when using passive mode, the client initiates communications of the

command port and the data ports. This fixes the problem of the client having a

firewall installed that blocks the server’s request to initiate communications on

the data port.

Creating a Local or Remote HTTP-Based Web Site

In the New Web Site dialog box, change the Location drop-down list selection to HTTP

and type a valid HTTP location, either localhost or a fully qualified remote location. If

you enter a remote location, the remote server must have Front Page Server Extensions

installed. After that, select the default language for the Web site and click OK.

Quick Check

1. Where are solution files created by default?

2. For new applications created with ASP.NET 2.0, what is the recommended

programming model?

Quick Check Answers

1. In the My Documents\Visual Studio 2005\Projects folder.

2. The code-behind programming model.

What’s in the Newly Created Web Site?

When you create a new Web site, Visual Studio 2005 creates a new page named

Default.aspx. When the new page is created, Visual Studio 2005 displays the page in

HTML Source view, where you can see the page’s HTML elements.

The Default.aspx page that is created also has a code-behind page called

Default.aspx.vb or Default.aspx.cs, depending on the programming language that you

choose. Code-behind pages are optional files that contain server-side code. The pro

gramming language you choose is the default language for your Web site, but you can

use multiple programming languages in the same Web application.

The new Web site also contains a special folder called App_Data. This folder is

reserved for databases such as SQL Server 2005 Express Edition .mdf files. Table 1-5

contains a list of special folders that you can add to your Web site. A primary benefit

http://Default.aspx.cs

Lesson 2: Creating a Web Site and Adding New Web Pages

25

of adhering to the suggested folder structure is that a user who attempts to browse to

any of these folders (except App_Themes) will receive an HTTP 403 Forbidden error.

Table 1-5 ASP.NET 2.0 Special Folders

Folder Name

App_Browsers

App_Code

App_Data

Description

Contains browser definitions files (.browser) that

ASP.NET uses to identify browsers and determine their

capabilities.

Contains source code for classes and business objects

(.cs, .vb, and .jsl files) that you want to compile as part of

your application.

Contains application data files (.mdf and .xml files).

App_GlobalResources Contains resources (.resx and .resources files) that are

compiled into assemblies and have a global scope.

App_LocalResources

App_Themes

App_WebReferences

Bin

Contains resources (.resx and .resources files) that are

scoped to a specific page, user control, or master page in

an application.

Contains files (.skin and .css files, as well as image files

and generic resources) that define the appearance of Web

pages and controls.

Contains Web reference files (.wsdl, .xsd, .disco, and .dis

comap files) that define Web references.

Contains compiled assemblies (.dll files) for code that

you want to reference in your application. Assemblies in

the Bin folder are automatically referenced in your

application.

Adding New Web Pages to the Web Site

After the Web site has been created, you can add as many Web pages as you need to

create your Web site application. A Web page is also known as a Web Form and may be

composed of a single file when using the in-line programming model or a pair of files

when using the code-behind programming model. The steps for adding a new Web

page to a Web site are as follows:

26

Chapter 1 Introducing the ASP.NET 2.0 Web Site

1. Using Visual Studio 2005 menus, request a new Web Form.

2. Assign a name to the Web Form.

3. Select the programming language for this Web Form.

4. Change other settings as necessary and click OK.

You can easily add new Web pages to the Web site by simply selecting Website | Add

New Item. Select the Web Form, assign a name, and select the programming lan

guage, as shown in Figure 1-8. Notice that the option Place Code In Separate File

allows you to indicate whether you want a code-behind file. Note that you can also

assign a master page, which allows you to create a consistent look and feel for your

Web site. We will cover master pages in more detail in Chapter 9, ―Customizing and

Personalizing a Web Application.‖

Figure 1-8 Adding a new Web Form to the Web site.

Lab: Create a New Web Site

In this lab, you will create a new Web site and explore its contents using Visual Studio

2005. After that, you will add a new Web page to the Web site.

� Exercise 1: Creating a New Web Site

1. Start Visual Studio 2005. Select Start | All Programs | Microsoft Visual Studio

2005 | Microsoft Visual Studio 2005.

2. Create a file-based Web site. Select File | New | Web Site. The New Web Site dia

log box appears.

Lesson 2: Creating a Web Site and Adding New Web Pages

27

3. In the New Web Site dialog box, change the Location drop-down list to File Sys

tem and type C:\70-528\MyFirstSite as the location on a local drive. Then

select your preferred programming language for the Web site and click OK. This

creates a new directory and subdirectory for the new Web site.

4. Explore the new Web site. In the Solution Explorer window, notice the special

folder called App_Data and the Web page called Default.aspx. Click the plus (+)

sign beside the Default.aspx file to reveal the code-behind page.

5. Explore the temporary files. Open the following folder with Windows Explorer:

%WinDir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files

Notice that this folder contains a subdirectory called myfirstsite. This folder was

dynamically created and contains files related to your new Web site. The first file

is the Code Compile Unit (.ccu) file, which contains a serialized collection of

source code objects that can be compiled. Next is the compiler (.compiled) file,

which is an .xml file containing compiler information. This file indicates that the

Code Compile Unit file is created from the Web page and its corresponding

code-behind page. The last one is the Hash.web file, which contains a hash of the

Web site.

6. While the temporary files folder is open and in view, build the Web site. In

Visual Studio 2005, select Build | Build Web Site. Notice that the code files are

being created, and then the newly created files are deleted and replaced with

assemblies. After the build is completed, note the files that exist in the tempo

rary files folder. A dynamic-link library (DLL) was created that contains the com

piled Web page and its code-behind page. Also, a new compiled file has been

created, containing the compiler settings that were used to create the DLL.

7. Browse the default.aspx page. In Visual Studio 2005, select Debug | Start With

out Debugging. After a moment you should see your blank Web page. Notice

that there are no new files in the temporary files folder because this page was

already compiled and has not been changed. Leave these windows open if you

are going to proceed to the next exercise.

� Exercise 2: Adding a New Web Page

In this exercise, you add a new Web page to the Web site that you just created.

1. Add a new Web page. In Visual Studio 2005, select Website | Add New Item. In

the Add New Item dialog box, select Web Form, assign Page2.aspx as the name,

select your preferred programming language, and click Add.

28

Chapter 1 Introducing the ASP.NET 2.0 Web Site

2. Observe the result in Visual Studio 2005. In the Solution Explorer window, a

new file has been added called Page2.aspx. Click the plus (+) sign next to

Page2.aspx to reveal the code-behind page.

3. Observe the result in the temporary files folder. Open the temporary files folder

and notice that a new code compile unit file has been created. Also, a compiler

file was created that contains the compiler settings that are required to create the

code compiler unit file.

4. Browse the Default.aspx page. In Visual Studio 2005, select Debug | Start With

out Debugging. After a moment, you should see your blank Web page. Notice

that there are two new files in the temporary files folder. The .dll file is an assem

bly that contains the compiled Page2.aspx file and its code-behind file.

Lesson 3: Working with Web Configuration Files

Lesson 3: Working with Web Configuration Files

31

Web sites are configured based on a hierarchy of XML configuration files, as shown in

Figure 1-9. The first configuration file is the Machine.config file. This file is located in

the configuration folder for the version of the .NET Framework installed on the com

puter, and is usually found at the following location:

%WINDIR%\Microsoft.NET\Framework\version\Config\machine.config

The Machine.config file contains settings for all .NET application types, such as

Windows, Console, ClassLibrary, and Web applications. These settings are global to

the machine. Some of the settings in the Machine.config file can be overridden by set

tings in Web.config files that are in the hierarchy, while other settings are more global

in nature. The global ones complete the .NET Framework, so they are protected and

cannot be overridden by the Web.config files.

After this lesson, you will be able to:

■ Understand the configuration file hierarchy.

■ Use the GUI configuration tool to make changes to the configuration files.

Estimated lesson time: 20 minutes

The next file in the hierarchy is the Root Web.config file, which is located in the same

directory as the Machine.config file. This file contains default Web server settings,

some of which can override settings in the Machine.config file.

ASP.NET Configuration Hierarchy

Subdirectory*

Web App*

web.config at /sales/reports

web.config at /sales

web.config at /hr/benefits

web.config at /hr

Web Site*

Root Default Web

Global Machine

*Optional

web.config at / (root)

web.config at config

machine.config at config

Figure 1-9 The configuration file hierarchy.

32

Chapter 1 Introducing the ASP.NET 2.0 Web Site

At the root directory of each Web site, you have the ability to add a Web.config file.

This file is optional and can contain additional settings for the Web site as well as set

ting overrides. In each Web application, you can optionally have a Web.config file to

provide more settings and override settings. Finally, each subdirectory in a Web appli

cation can optionally have a Web.config file where only a subset of the settings is

valid.

Processing the Configuration Files

When you initially run your Web application, the runtime builds a cache of the effec

tive settings for your Web application by flattening the layers of configuration files as

follows:

1. The Machine.config file settings are retrieved.

2. The settings from the root Web.config file are added to the caches, overwriting

any conflicting settings that were created earlier while reading the Machine.con

fig file.

3. If there is a Web.config file at the root of the Web site, this file is read into the

cache, overwriting existing entries.

4. If there is a Web.config file at the Web application, it is read into the caches, also

overwriting any existing settings. The resulting cache contains the settings for

this Web site.

5. If you have subdirectories in your Web application, the subdirectories can have a

Web.conifg file that includes settings that are specific to the files and folders that

are contained within this folder. To calculate the effective settings for the folder,

the Web site settings are read (steps 1-4), and then this Web.config is read into

the cache for this folder, overwriting (thereby overriding) any existing settings.

Modifying the Configuration Files

Because they are XML files, the configuration files can be opened and modified with

any text editor or XML editor. You can also use the .NET Framework 2.0 Configura

tion snap-in with the Microsoft Management Console (MMC), which provides a

graphical user interface (GUI) for modifying some of the configuration file settings

that an administrator may want to change.

Visual Studio 2005 also provides the Web Site Administration Tool, which can be

used to modify many of the configuration file settings. You can access this tool by

selecting Website | ASP.NET Configuration.

Lesson 3: Working with Web Configuration Files

33

The Web Site Administration Tool allows you to edit the following categories of the

configuration files:

■ Security This setting allows you to set up security for your Web site. In this cat

egory, you can add users, roles, and permissions for your Web site.

■ Application Configuration This category is used to modify the application set

tings. Figure 1-10 shows the Web Site Administration Tool, which displays the

Application tab.

■ Provider Configuration This configuration file contains settings that allow you to

specify the database provider to use for maintaining membership and roles.

Figure 1-10 The Web Site Administration Tool showing the Application tab.

The Web Site Administration Tool lets you create and modify Web site settings that

are not inherited. If a setting is inherited and cannot be overridden, it will appear, but

it will be dimmed when the setting is disabled.

Quick Check

1. Is the format of a configuration file CSV, INI, XML, or DOC?

2. If a setting exists in the root Web.config file and also in the Web.config file

at the Web application but with a different value, which Web.config file

takes precedence?

34

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Quick Check Answers

1. The configuration file is formatted with XML.

2. The Web.config file at the Web application takes precedence.

Lab: Modifying Your Web Site Configuration

In this lab, you use the Web Site Administration Tool to modify the Web site configu

ration by enabling debugging on the Web site. After that, you view the changes in the

Web.config file.

� Exercise 1: Creating the New Web.Config File

In this exercise, you start Visual Studio 2005 and open the Web site from the previous

lab.

1. Open the MyFirstSite from the previous lab. Alternatively, you can open the

completed Lesson 2 lab project from the CD.

2. Note that this project does not contain a Web.config file yet. If the project does

contain a Web.config file, delete it.

3. Open the Web Site Administration Tool by selecting Website | ASP.NET

Configuration.

4. Click the Application tab to display the application settings.

5. Click the link to display the Configure debugging and tracing page, as shown in

Figure 1-11.

Figure 1-11 The Configure debugging and trace page.

6. Select the Enable Debugging check box. This will enable debugging for the cur

rent Web site. Notice that selecting this check box performs a PostBack to the

Web server.

7. Close the Web Site Administration Tool.

8. A new Web.config file was created. Click the Refresh button at the top of the

Solution Explorer window and the Web.config file will appear.

9. Open the Web.config file. The new Web.config file will contain the following:

<?xml version="1.0" encoding="utf-8"?>

<configuration

xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <system.web>

<compilation debug="true" />

 </system.web>

</configuration>

Notice that the file contains the setting to set debug to true.

Lesson 4: Using ASP.NET Trace to Explore Web Pages

Lesson 4: Using ASP.NET Trace to Explore Web Pages

37

The trace facility that is included in ASP.NET can be used to troubleshoot and diag

nose problems with your Web site. You can also use the trace facility to explore

resource usage on each Web page. This lesson covers the enabling and configuring of

the trace facility and then explores the data that is made available by the trace facility.

After this lesson, you will be able to:

■ Enable and configure the ASP.NET trace facility.

■ Understand the data that is available in the ASP.NET trace facility.

Estimated lesson time: 20 minutes

Enabling and Configuring the ASP.NET Trace Facility

The trace facility can be enabled in the Web.config file, but you can use the Web Site

Administration Tool to provide a user-friendly GUI to enable and configure this

option. This section demonstrates the enabling and setting of the ASP.NET trace facil

ity options.

Enabling the Trace Facility Using the Web Site Administration Tool

The following steps identify how to enable and configure the trace facility using the

Web Site Administration Tool:

1. Open the Web Site Administration Tool by selecting Website | ASP.NET

Configuration.

2. Click the Application tab and click the Configure debugging and tracing link to

view and modify the trace settings.

3. Click Capture Tracing Information. This enables the trace facility.

4. Change the settings as necessary. Table 1-6 describes each of the settings.

38

Chapter 1 Introducing the ASP.NET 2.0 Web Site

Table 1-6 ASP.NET Trace Settings

Web Site Web.Config

Administration Setting

Tool Setting

Capture tracing Enabled

information

Description

Enables the trace facility. When this option

is enabled, the other trace options are also

enabled.

Display tracing

information on

individual pages

pageOutput Displays the trace information directly on

the Web page that is being traced.

Depending on the page content, the trace

information displays either at the bottom

of the Web page or behind the regular

Web page content.

Display trace

output for

Select the sort

order for trace

results

localOnly

traceMode

Designates either Local requests only or All

requests. When set to Local Requests Only,

the trace facility only operates with

requests and PostBacks from the computer

that the Web server is running on. The All

requests setting enables the trace facility to

respond for all requests and PostBacks

from any computer to the Web site.

Enables sorting of the trace output either

by time or by category.

Number of trace

requests to cache

Select which

trace results to

cache

requestLimit Sets the quantity of items to hold in the

cache.

mostRecent Designates the Most Recent Trace Results

or the Oldest Trace Results. When set to

Most Recent Trace Results, the cache con

tinues to update, holding the latest

results. When set to Oldest Trace Results,

as soon as the number of requests has

been met, the cache no longer updates

until after the Web application is

restarted.

5. Run the Web application.

Lesson 4: Using ASP.NET Trace to Explore Web Pages

39

6. Navigate to the trace.axd page on the Web application (http://server/applica

tion/trace.axd). This is not a physical Web page. Instead, trace.axd is a virtual

page that is constructed dynamically based on the Web pages you visited, and

displays the trace data that is available.

Enabling the Trace Facility in the Web.Config File

The ASP.NET trace facility can also be enabled in the Web application’s Web.config

file. You do so using the following steps:

1. Open the Web.Config file for your site. This is an XML file that contains settings

for the Web site.

2. Locate the trace element, which looks something like this.

<trace

enabled="false"

requestLimit="10"

pageOutput="false"

traceMode="SortByTime"

localOnly="true"

mostRecent="true"

/>

3. Change the settings as necessary. Table 1-6 describes each of the settings.

4. Run the Web application.

5. Navigate to the trace.axd page on the Web application (http://server/applica

tion/trace.axd) to display the trace data that is available.

Viewing the Trace Data

After turning on the ASP.NET trace facility, you can either view the trace output on

each Web page (pageOutput="true"), or view the trace output by navigating to the

trace.axd (http://server/application/trace.axd) page on the current Web application.

When navigating to the trace.axd page, a summary page displays, which contains the

list of results that are in the cache. Click on one of the cached results to view the result

of a single page request, which is similar to the resultant information that is shown on

each Web page when the page output is set to True.

Security Alert If you opt for displaying the trace information on individual pages, the trace

information can be displayed on any browser that makes a request. This is a potential security

threat because sensitive information such as server variables will display. Be sure to disable page

tracing on production Web servers.

(http:/server/applica-
(http:/server/applica-
(http:/server/applica-
(http:/server/applica-
(http:/server/application/trace.axd)
(http:/server/application/trace.axd)
(http:/server/application/trace.axd)

40

Chapter 1 Introducing the ASP.NET 2.0 Web Site

The trace result page is broken into sections, as described in Table 1-7. This informa

tion can be very useful when you are trying to identify performance issues and

resource usage.

Table 1-7 Trace Result Sections

Trace Result Section Description

Request Details Provides general details about the page request.

Trace Information Displays performance information related to the Web

page’s life-cycle events. The From First(s) column displays

the running time from when the page request started. The

From Last(s) column shows the elapsed time since the pre

vious event.

Control Tree Displays information about each control on the Web page,

such as the size of the rendered controls.

Session State Displays all Session variables and their values.

Application State Displays all Application variables and their states.

Request Cookies Displays the list of cookies that are passed to the server as

Collection part of the request.

Response Cookies Displays the list of cookies that are passed to the browser as

Collection part of the response.

Headers Collection Displays the list of HTTP headers that are sent to the Web

server as part of the request.

Form Collection Displays the list of values that are posted back to the Web

server.

QueryString Displays the list of values that are included in the query

Collection string.

Server Variables Displays all server variables.

Quick Check

1. How can you make the trace data display on your Web page?

2. What is the name of the virtual page that you can request to view trace data

when the trace data is not displayed on its corresponding Web page?

Quick Check Answers

1. Set pageOutput="true".

Lesson 4: Using ASP.NET Trace to Explore Web Pages

41

2. The virtual page is called Trace.axd.

Lab: Using the ASP.NET Trace Facility

In the following lab, you use the Web Site Administration Tool to modify the Web site

configuration by enabling the ASP.NET trace facility on the Web site. After that, you

browse your Web site and view the trace results.

� Exercise 1: Enable the ASP.NET Trace Facility

In this exercise, you start Visual Studio 2005 and open the Web site from the previous lab.

1. Open the MyFirstSite from the previous lab. Alternatively, you can open the

completed Lesson 3 lab project from the CD.

2. Open the Web Site Administration Tool by selecting Website | ASP.NET

Configuration.

3. Click the Application tab to display the application settings.

4. Click the link to display the Configure debugging and tracing page.

5. Click Capture tracing information. This enables the trace facility.

6. Make the following changes to cache the latest 50 local request results without

displaying on the Web page:

❑ Select the Capture Tracing Information check box.

❑ Ensure the Display Tracing Information On Individual Pages check box is

unchecked.

❑ Set the Display Trace Output For option to Local Requests Only.

❑ Set the Select The Sort Order For Trace Results option to By Time.

❑ Set the Number Of Trace Requests To Cache drop-down list to 50.

❑ Set the Select Which Trace Results To Cache option to Most Recent Trace

Results.

7. Close the Web Site Administration Tool.

8. Open the Web.config file. The new Web.config file will contain the following:

<?xml version="1.0" encoding="utf-8"?>

<configuration

 xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

42

Chapter 1 Introducing the ASP.NET 2.0 Web Site

<system.web>

 <trace

 enabled="true"

 mostRecent="true"

 requestLimit="50" />

 <compilation debug="true" />

</system.web>

</configuration>

Notice that the file contains the trace element and attributes to enable tracing as

described.

9. Press F5 to run the Web application. Although the default.aspx page is blank

because it has no controls on it, the trace facility is still logging results. Press F5

a couple times to refresh the Web page.

10. In the Address bar, change the URL to point to the Page2.aspx file. Press F5 a

couple times to refresh the Web page.

11. In the Address bar, change the URL to request the trace.axd page. You should see

the trace summary page shown in Figure 1-12.

Figure 1-12 The trace.axd summary screen.

12. Click one of the links to open one of the trace result pages. Notice that Trace

Information contains the timings for the events in the Web page life cycle as

shown in Figure 1-13.

L

e

s

s

o

n

4

:

U

s

i

n

g

A

S

P

.

N

E

T

T

r

a

c

e

t

o

E

x

p

l

ore Web Pages

Figure 1-13 The detailed trace information.

Chapter 2

Adding and Configuring Server
Controls

Web site development provides many challenges that other application development

projects don’t have. One such challenge is for the developer to create a Web site appli

cation that provides seamless communication between the Web browser and the Web

server. By seamless, we mean being able to move data back and forth in a way that

gives the user the impression that the Web browser and server are one. ASP.NET helps

the developer with this challenge by supplying server controls that provide automatic

communication to the Web server when an event takes place.

This chapter starts with a description of the two primary types of server controls that

are available in ASP.NET: Hypertext Markup Language (HTML) and Web. After that,

this chapter dives deeply into the Web page and server control life cycle to help you

understand the operation of a server control. Lastly, this chapter covers some of the

controls that are available in ASP.NET 2.0.

Exam objectives in this chapter:

■ Add and configure Web server controls.

❑ Create HTML server controls in the designer.

❑ Set HTML server control properties programmatically.

❑ Use HTML server controls to programmatically access HTML tags.

❑ Create HTML controls as elements in an HTML document.

❑ Add Web server controls to a Web Form.

❑ Configure the properties of Web server controls programmatically.

❑ Configure Web server control properties by using the Microsoft Visual Stu

dio Property Editor.

❑ Specify whether events of a control cause a Web Form to post to the server.

❑ Configure a control to receive postback events.

❑ Access controls in Web Forms pages when working with naming contain

ers and child controls.

51

52

Chapter 2 Adding and Configuring Server Controls

❑ Use the Label Web server control to display customized text on a Web page.

❑ Enable users to type information into a Web Form by using the TextBox

Web server control.

❑ Use the Button Web server control to send a command to the server when

a button is clicked.

❑ Implement the CheckBox Web server control.

❑ Create a mutually exclusive set of choices by using the RadioButton Web

server control.

❑ Dynamically add Web server controls to a Web Forms page programmatically.

■ Create event handlers for pages and controls.

❑ Create event handlers for a page or control at design time.

❑ Program a Web application.

❑ Convert HTML server controls to HTML elements.

Lessons in this chapter:

■ Lesson 1: Using a Server Control . 53

■ Lesson 2: Exploring Common Web Server Controls . 82

Before You Begin
To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and:

■ Have a basic understanding of HTML and client-side scripting.

■ Know how to create a new Web site.

Real World

Glenn Johnson

On many occasions, I’ve seen developers select the wrong server control for the

functionality that needed to be implemented. The problem was that these devel

opers tended to use only a select few controls for most tasks. The end result is

that they spent excessive amounts of time developing something that already

existed in a different control.

Lesson 1: Using a Server Control

Lesson 1: Using a Server Control

53

A server control is a control that is programmable by writing server-side code to

respond to events from the control. Server controls automatically maintain their state

between calls to the server and are easily identified by their runat="server" attribute. A

server control must have an ID attribute for you to reference it in code. ASP.NET pro

vides two primary types of server controls: HTML and Web. All server controls,

including the Web page class itself, inherit from the System.Web.UI.Control class. Fig

ure 2-1 shows the class hierarchy of the Control class with its primary child classes.

Control

Class

WebControl

Class

 Control

HtmlControl

Abstract Class

 Control

TemplateControl

Abstract Class

 Control

Page

Class

 Template Control

OtherSpecializedControls

Abstract Class

 Control

Figure 2-1 The Control class with its primary child classes. Note that OtherSpecializedControls is

not a class; it’s simply an indicator that there are other specialized controls that inherit from the

Control class.

This section covers the life cycle of the Web page and its controls. After that, HTML

and Web server controls are covered.

After this lesson, you will be able to:

■ Describe the life cycle of the Web page and its controls.

■ Describe ViewState.

■ Explain the order and purpose of the primary events that take place when a page is

requested.

Estimated lesson time: 30 minutes

54

Chapter 2 Adding and Configuring Server Controls

Understanding the Life Cycle of the Web Page and Its Controls

To thoroughly understand how server controls operate, it’s important to have a good

understanding of the life cycle of a Web page and its controls. The life cycle starts

when the browser requests a Web page from a Web site. The Web server constructs

the Web page object and all of its child control objects and uses these objects to ren

der the Web page to the browser. After that, the objects are destroyed. The Web page

object and its child control objects are destroyed to free up resources. This allows the

Web server to scale nicely but poses problems when you’re trying to hold onto object

data, or state, between calls to the server. This is where ViewState comes to the rescue.

What Is ViewState?

ViewState is the mechanism by which Web page object and child control object data

can be maintained between page requests. Any object data that cannot be represented

as HTML in the Web page is eligible to be placed into ViewState. For example, when

a user clicks the Submit button on a Web page, a Postback occurs, sending all form

data back to the Web server. ViewState is implemented by using a hidden form field

called ―__ViewState‖ to store the data. At the server, ViewState is used to reconstruct

the Web page and its server controls.

Using EnableViewState to Minimize ViewState Size

Adding lots of data to ViewState can cause performance problems because the data is

sent to the browser when a page is requested and back to the server when the data is

posted back. To minimize the data that is in ViewState, you can set the EnableViewState

property, which your server controls to false. Be careful, however, because setting this

property to false means that you need to write code to repopulate the control yourself

between page calls.

Control and Data State Separation

In ASP.NET 2.0, controls have the ability to separate data state and control state. Pre

vious versions of ASP.NET stored data and control state together, and when a con

trol’s EnableViewState property was set to false, the control lost its appearance along

with the data. What this means is that, in ASP.NET 2.0 you can set a control’s Enable-

ViewState to false and you lose the data but not the control’s appearance. This also

means that a control may still be contributing to the size of the __ViewState input even

when the EnableViewState property is set to false.

NOTE .NET 2.0

Lesson 1: Using a Server Control

55

Control state and data state separation is new in ASP.NET version 2.0.

Identifying ViewState Contributors

One problem that plagues many Web pages is that ViewState becomes bloated, which

causes performance problems when receiving and posting pages. You can use the

ASP.NET trace facility to examine the controls that contribute to ViewState. The trace

facility also displays the ViewState size for each control, which means that you can eas

ily identify the source of the bloat.

To use the ASP.NET trace facility to identify ViewState contributors, follow these steps:

1. Enable the trace facility as described in Chapter 1, ―Introducing the ASP.NET 2.0

Web Site.‖

2. Browse the Web site, visiting the Web pages that you are interested in obtaining

ViewState information for.

3. View the trace information; the Control Tree section indicates the ViewState size

and the ControlState size for each control on the Web page.

Web Page and Server Control Events

All server controls have methods and events that execute during their life cycles, as

their pages are being created and destroyed. Because the Web page derives from the

Control class, it also has methods and events that execute as it is being created and

destroyed. Table 2-1 contains an ordered list of the methods that execute and the

events that take place when a page is requested. This table also contains the method

names that correspond to the event. This list is specifically focused on ViewState and

its availability during the control’s life cycle.

Table 2-1 Web Page/Server Control Life Cycle Methods and Events

Method (Event)

1. OnInit (Init)

Description

Initializes each child control of the current

control.

56

Chapter 2 Adding and Configuring Server Controls

Table 2-1 Web Page/Server Control Life Cycle Methods and Events

Method (Event) Description

2. LoadControlState Loads the ControlState of the control. To use

this method, the control must call the

Page.RegisterRequiresControlState method in

the OnInit method of the control.

3. LoadViewState Loads the ViewState of the control.

4. LoadPostData Is defined on interface IPostBackDataHandler.

Controls that implement this interface use

this method to retrieve the incoming form

data and update the control’s properties

accordingly.

5. Load (OnLoad) Allows actions that are common to every

request to be placed here. Note that the con

trol is stable at this time; it has been initialized

and its state has been reconstructed.

6. RaisePostDataChangedEvent Is defined on the interface IPostBackData-

Handler. Controls that implement this inter

face use this event to raise change events in

response to the Postback data changing

between the current Postback and the previ

ous Postback. For example, if a TextBox has a

TextChanged event and AutoPostback is

turned off, clicking a button causes the Text-

Changed event to execute in this stage before

handling the click event of the button, which

is raised in the next stage.

7. RaisePostbackEvent Handles the client-side event that caused the

Postback to occur.

Lesson 1: Using a Server Control

Table 2-1 Web Page/Server Control Life Cycle Methods and Events

Method (Event) Description

8. PreRender (OnPreRender) Allows last-minute changes to the control.

This event takes place after all regular Post-

57

9. SaveControlState

10. SaveViewState

11. Render

12. Dispose

13. UnLoad

back events have taken place. This event takes

place before saving ViewState, so any changes

made here are saved.

Saves the current control state to ViewState.

After this stage, any changes to the control

state are lost. To use this method, the control

must call the Page.RegisterRequiresControlState

method in the OnInit method of the control.

Saves the current data state of the control to

ViewState. After this stage, any changes to the

control data are lost.

Generates the client-side HTML, Dynamic

Hypertext Markup Language (DHTML), and

script that are necessary to properly display

this control at the browser. In this stage, any

changes to the control are not persisted into

ViewState.

Accepts cleanup code. Releases any unman-

aged resources in this stage. Unmanaged

resources are resources that are not handled

by the .NET common language runtime, such

as file handles and database connections.

Accepts cleanup code. Releases any managed

resources in this stage. Managed resources are

resources that are handled by the runtime,

such as instances of classes created by the

.NET common language runtime.

58

Chapter 2 Adding and Configuring Server Controls

Creating Event Handlers

The Web page and its server controls have a default event. For example, the Web

page’s default event is Load event, and the button’s default event is the Click event. In

the Microsoft Visual Studio 2005 design time environment, you can add an event han

dler method for the default event by simply double-clicking the design surface of the

object. An event handler is created in the code-behind file. For example, if you double-

click on the Web page (don’t double-click a server control), a Page_Load event handler

method is created in the code-behind page, and you can simply add your custom code

into this method.

The VB.NET and C# Web page designers differ when it comes to creating event han

dlers for other events, including PostBack events.

Adding the VB.NET Event Handler For VB.NET, use the following steps to create an

event handler for the Init event, assuming that you are currently looking at the Web

page:

1. Right-click the Web page and click View Code. This opens the code-behind page

without inserting any code.

2. In the code-behind file, click the object drop-down list and click Page Events, as

shown in Figure 2-2.

Figure 2-2 Add the Init event handler to a VB.NET Web page.

3. Click the event drop-down list and click the Init event that adds the following

event handler code:

Lesson 1: Using a Server Control

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.Init

End Sub

59

Adding the C# Event Handler In C#, the event handler drop-down list only contains

existing events, not all events. This means that you need to explicitly type the event

handler methods for Page events, but there is a way to use the Graphical User Inter

face (GUI) to add event handlers for the server controls that are on the Web page. To

add the Init event handler to a C# Web page, follow these steps:

1. Type the following code into the code-behind page. The Web page has its Auto-

EventWireup property set to true in the @Page directive at the top of the Source

view, which means that the runtime automatically connects to the event handler

that you create as long as the method name is in the form Page_Event.

private void Page_Init(object sender, EventArgs e)

{

}

2. To add an event handler for a server control that’s on the Web page, in Design

view, click the server control to select it.

3. In the Properties windows, click the Events icon, which is the button that has the

yellow lightning bolt. This changes the Properties window to the events view.

4. Locate the Init event. Double-click anywhere on the line that contains the Init

event, which opens the code-behind page and inserts the following event han

dler code as shown in Figure 2-3.

Figure 2-3 Add the Init event handler to a C# server control.

60

Chapter 2 Adding and Configuring Server Controls

Making the Decision: HTML or Web Server Controls?

The following sections cover HTML and Web server controls. Frequently, the ques

tion arises: which one should I use? Here is some guidance that can help you choose

the proper control type.

Consider using the HTML server controls when any of the following conditions exist:

■ You are migrating existing ASP pages to ASP.NET.

■ The control needs to have custom client-side JavaScript attached to the control’s

events.

■ The Web page has lots of client-side JavaScript and that is referencing the control.

In all other cases, you should consider using the more powerful Web server controls.

MORE INFO HTML and Web server controls

For more information about the differences between HTML server controls and Web server con

trols, visit http://msdn2.microsoft.com/en-us/zsyt68f1.aspx.

HTML Server Controls

An HTML server control looks like its matching HTML tag, but it also contains the

runat="server" attribute. HTML server controls provide server-side objects that you can

programmatically access. In the Web browser, they typically render as single HTML

tags. The primary reason to use HTML server controls is to provide an easy conver

sion of older Web sites to ASP.NET. Figure 2-4 shows the class hierarchy of the com

mon HTML server controls.

http://ASP.NET
http://msdn2.microsoft.com/en-us/zsyt68f1.aspx
http://ASP.NET

HtmlControl

MustInherit Class

 Control

Lesson 1: Using a Server Control

61

HtmlContainerControl

MustInherit Class

 HtmlControl

HtmlGenericControl

Class

 HtmlContainerControl

HtmlImage

Class

 HtmlControl

HtmlInputHidden

Class

 HtmlInputControl

HtmlInputControl

MustInherit Class

 HtmlControl

HtmlInputButton

Class

 HtmlInputControl

HtmlLink

Class

 HtmlControl

HtmlInputText

Class

 HtmlInputControl

HtmlInputSubmit

Class

 HtmlInputButton

HtmlInputReset

Class

 HtmlInputButton

Figure 2-4 The class hierarchy of the common HTML server controls.

Creating HTML Control Elements in an HTML Document

You can easily create HTML controls as elements in an HTML document. Consider

the following Web page on an existing ASP Web site.

Old ASP Web Page
<html>

<head><title>Customer Page</title></head>

<body>

 <form name="Form1" method="post" action="update.asp" id="Form1" >

 <input type="text" name="CustomerName"

id="CustomerName" >

 <input type="submit" name="SubmitButton"

value="Submit" id="SubmitButton" >

 </form>

</body>

</html>

62

Chapter 2 Adding and Configuring Server Controls

This is a form that has a text box and a submit button. The user can type a customer

name and click the submit button to POST the data back to the update.asp page at the

Web server.

Using HTML controls, you can easily convert the Web page to ASP.NET 2.0, resulting

in the following.

Converted ASP.NET 2.0 Web Page
<html>

<head><title>Customer Page</title></head>

<body>

 <form name="Form1" method="post" id="Form1" runat="server">

 <input type="text" name="CustomerName"

id="CustomerName" runat="server" >

 <input type="submit" name="SubmitButton"

value="Submit" id="SubmitButton" runat="server">

 </form>

</body>

</html>

Notice that there is a one-to-one conversion from the HTML tag to the HTML server

control, but the runat="server" attribute was added. In essence, HTML controls were

created by simply modifying the elements of the HTML document. Also, notice that

the action attribute was removed from the form tag, because it’s customary to send

the data back to the same page.

Creating HTML Server Controls in the Designer

To create an HTML server control using the Visual Studio 2005 designer, perform the

following steps:

1. Click the HTML tab in the Toolbox.

2. Drag an HTML element to either the Design or Source view of the Web page.

3. Convert the element to an HTML server control. In Source view, add the

runat="server" attribute. In Design view, right-click the HTML element and click

Run As Server Control. A glyph appears on the upper-left corner of the control in

Design view to indicate that it is a server control.

NOTE Location of HTML Server Controls

An HTML server control must be located inside a form element that has the runat="server" attribute

to operate properly.

Lesson 1: Using a Server Control

63

If you decide that you no longer need to program an HTML server control in server

code, you should convert it back to a plain HTML element. Each HTML server control

in a page uses resources, so it is a good practice to minimize the number of controls

that the ASP.NET page has to work with. In Design view, right-click the control and

clear the check mark next to Run As Server Control. In Source view, remove the

runat="server" attribute from the control’s tag. If the HTML element is referenced by

client script, you should not remove the ID attribute.

Setting the HTML Server Control Properties

By default, HTML elements within an ASP.NET file are treated as literal text. You can

not reference them in server-side code until you convert the HTML element into an

HTML server control. You should also set the element’s ID attribute to give you a way

to programmatically reference the control. Table 2-2 contains a list of the properties

that all HTML server controls have in common. You can set the properties of the

HTML server control by setting the attributes in the Source view, by setting the prop

erties in the Design view, or by setting the properties programmatically in code. This

section examines all three methods.

Table 2-2 Common HTML Server Control Properties

Property

Attributes

Disabled

Id

Style

TagName

Visible

Description

A list of all attribute name/value pairs expressed on a server

control tag within a selected ASP.NET page. This is accessible

via code.

A value that indicates whether the disabled attribute is included

when an HTML control is rendered on the browser, which

makes the control read-only when true.

The programmatic identification of the control.

A list of all cascading style sheet (CSS) properties that are

applied to the specified HTML server control.

The element name of a tag that contains a runat="server"

attribute.

A value that indicates whether the HTML server control is dis

played on the page. If this value is set to false, the control does

not render any HTML to the browser.

64

Chapter 2 Adding and Configuring Server Controls

Setting Properties in Source View In Source view, you set the properties of an HTML

control by adding the appropriate HTML attribute to the HTML server control’s ele

ment. Consider the following HTML server control button.

<input type="button"

 id="myButton"

 runat="server"

 style="position: absolute; top: 50px; left: 100px;"

 value="Click Me"

 visible="true" />

Notice that this server control has many of the same attributes that an HTML input

button element has, except it has the runat="server" attribute and the visible attribute.

The ID sets the programmatic identification to myButton, the style attribute sets the

location of the control, the value of Click Me displays on the button face, and the but

ton is visible. The rendered HTML looks like the following:

<input

 id="myButton"

 name="myButton"

 type="button"

 style="position: absolute; top: 50px; left: 100px;"

 value="Click Me" />

Notice that the visible attribute is missing. The fact that the input element was in the

rendered HTML is an indicator that the visible attribute was set to true. If the visible

attribute was set to false, the input element would be missing from the rendered

HTML at the browser. Also, if the name attribute is not explicitly set, the name

attribute is set to the ID attribute’s value.

Setting Properties in Design View In Design view, the properties of an HTML control

are set by clicking the server control and modifying the desired properties in the Prop

erties window. Figure 2-5 shows the same button configured using the Properties

window. Changes that are made in the Properties window are reflected in the Source

view, and changes in the Source view are reflected in the Properties window in

Design view.

Lesson 1: Using a Server Control

Figure 2-5 Setting the HTML input button properties using the Properties window.

65

Setting Properties Programmatically in Code To set the properties of an HTML

server control programmatically, use the dot notation to refer to the HTML server con

trol by its ID property, and specify the property that you wish to change. All properties

are essentially strings, integers, or boolean except the style property, which is a collec

tion of keys as strings and values as strings. The following code was added to the

Page_Load event handler; it sets the visible and style properties of the button that has

the ID myButton:

'VB

myButton.Visible = True

myButton.Style.Add("position", "absolute")

myButton.Style.Add("left", "75px")

myButton.Style.Add("top", "150px")

//C#

myButton.Visible = true;

myButton.Style.Add("position", "absolute");

myButton.Style.Add("left", "75px");

myButton.Style.Add("top", "150px");

66

Chapter 2 Adding and Configuring Server Controls

Using HTML Server Controls to Programmatically Access HTML Tags If you need to

access the properties of an HTML tag from a server control, the HTML tag must be

converted to an HTML server control by adding the runat="server" attribute. The fol

lowing steps demonstrate how clicking the HTML Button Input reads the value from

an HTML Text Input and sets the innerText of an HTML Div:

1. Add an HTML Text Input and an HTML Div from the Toolbox.

2. Position these HTML elements as shown in Figure 2-6.

NOTE Setting the Layout to Absolute Positioning

If you want to enable absolute positioning of controls on your Web pages, you can change

the default positioning by selecting Layout | Positioning | Auto-position Options to display

the Options window. Locate the HTML Designer | CSS Positioning options and set the posi

tioning options to Absolutely positioned for controls added using the Toolbox, paste, or

drag-and-drop options.

Figure 2-6 Add HTML elements to the page and convert to HTML server controls.

3. Right-click the HTML Text Input and HTML Div and click Run As Server Control.

4. Double-click myButton to add the Click event handler and add code to read

from the HTML Text Input and place its value into the HTML Div’s innerText

property.

'VB

Protected Sub myButton_ServerClick(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles myButton.ServerClick

DIV1.InnerText = Text1.Value

End Sub

//C#

Lesson 1: Using a Server Control

67

protected void myButton_ServerClick(object sender,

 System.EventArgs e)

{

DIV1.InnerText = Text1.Value;

}

Best Practices for Using HTML Server Controls

HTML server controls are also useful when your control needs to have client-side Java-

Script events attached.

There are a couple of disadvantages to using HTML server controls. One disadvantage

is that HTML controls don’t have a programming model that is consistent with Win-

Form programming. For example, in WinForm programming, the data that is typed

in the text box is available via the Text property, whereas the HTML server control’s

text box data is available via the Value property.

Another disadvantage to HTML server controls is that an HTML server control directly

maps to a single HTML tag. Wouldn’t it be great if you could add a single server control

to a Web page and it would be rendered as many HTML tags? Web server controls are

the answer.

Web Server Controls

Web server controls offer more functionality and a more consistent programming

model than HTML server controls. Web server controls may also render as many

HTML tags and may also include client-side JavaScript code. This means that it is pos

sible to create very elaborate Web server controls, such as a calendar control or a data

grid control.

Most, but not all, Web server controls inherit from the WebControl class. Figure 2-7

shows the class hierarchy of some of the more common Web server controls.

Web server controls have the ability to detect the Web browser’s capabilities and ren

der appropriately based on those capabilities. This means that the Web server con

trols can use the Web browser to its fullest potential.

68

Chapter 2 Adding and Configuring Server Controls

WebControl
Class

 Control

Button Label CheckBox

BaseDataBoundControl

Class

 WebControl

TextBox

Class

Class

 WebControl

Image

Class

Class

 WebControl

MustInherit Class

 WebControl

DataBoundControl

MustInherit Class

 WebControl

AdRotator

Class

 DataBoundControl

DropDownList

Class

 ListControl

 WebControl

ListControl

MustInherit Class

 DataBoundControl

ListBox

Class

 ListControl

 BaseDataBoundControl

CompositeDataBoundControl

MustInherit Class

 DataBoundControl

GridView

Class

 CompositeDataBoundControl

Figure 2-7 The class hierarchy of some of the common Web server controls.

In the design environment, a typical Web server control’s source markup might look

like the following.

<asp:textbox attributes runat="server" />

The attributes of the Web server control are used to control the look and behavior of

the Web server control. These attributes may not render as attributes in the HTML

that is rendered to the Web browser.

Adding Web Server Controls to the Web Page

A Web server control can be added to a Web page using Visual Studio 2005 Design

view or Source view, or the Web server controls can be added dynamically via code.

This section covers each of these methods.

Lesson 1: Using a Server Control

Adding Web Server Controls Using Design View

Use these steps to add a Web server control to a Web page using the Design view:

1. Open the Web page in Visual Studio 2005.

2. Click the Design tab on the bottom of the Web page.

3. Open the Toolbox and click the tab called Standard.

4. Drag and drop a Web server control on the Web page.

Adding Web Server Controls Using Source View

Use these steps to add a Web server control to a Web page using the Source view:

1. Open the Web page in Visual Studio 2005.

2. Click the Source view tab on the bottom of the Web page.

3. Perform either step 4 or steps 5 and 6.

69

4. In the Source View of the Web page, type the Web server control element and its

attributes.

5. Open the Toolbox and click the Standard tab.

6. In the Source View of the Web page, drag and drop a Web server control.

Like the HTML server control, the Web server control must be located within a form

element that has the runat="server" attribute.

Adding Web Server Controls Dynamically Via Code

In addition to adding Web server controls using Visual Studio 2005, you can also pro

grammatically add Web server controls to the Web page dynamically. It is important

to understand the Web page and server control life cycle described in Table 2-1 to

assure that the control operates properly. Notice that the OnInit(Init) method and

event are typically used to initiate child controls. The following steps demonstrate the

implementation of dynamically generated Web controls:

1. Open the Web page’s code-behind page in Visual Studio 2005.

2. Click the Source view tab on the bottom of the Web page.

3. In the Page_Init method, add code to create a new instance of the Web server

control.

4. After creating the instance, add code to make the control visible.

70

Chapter 2 Adding and Configuring Server Controls

5. Add the control to the Controls collection of form1. Your code should look like

the following.

'VB

Protected Sub Page_Init(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Init

Dim c As New TextBox()

c.ID = "txtUserName"

c.Visible = True

form1.Controls.Add(c))

End Sub

//C#

protected void Page_Init(object sender,

 System.EventArgs e)

{

TextBox c = new TextBox();

c.ID = "txtUserName";

c.Visible = true;

form1.Controls.Add(c));

}

Setting the Web Server Control Properties

Most, but not all Web Server controls inherit from the WebControl class. All Web

server controls must contain a valid ID to give you a way to programmatically refer

ence the control. Table 2-3 contains a list of the properties that all Web server controls

have in common. You can set the properties of the Web server control by setting the

attributes in the Source view, by setting the properties in the Design view, or by setting

the properties programmatically in code. This section examines all three methods.

Table 2-3 Common Web Server Control Properties

Property Description

AccessKey The keyboard shortcut key. It can specify a single letter

or number that the user can press while holding down

Alt. For example, specify ―Q‖ if you want the user to press

Alt+Q to access the control. The property is supported

only in Microsoft Internet Explorer 4.0 and later.

Lesson 1: Using a Server Control

Table 2-3 Common Web Server Control Properties

Property Description

71

Attributes

BackColor

BorderColor

BorderWidth

BorderStyle

CssClass

Style

Enabled

EnableTheming

EnableViewState

A collection of additional attributes on the control that is

not defined by a public property, but that should be ren

dered in the primary HTML element of this control. This

allows you to use an HTML attribute that is not directly

supported by the control. This property is accessible pro

grammatically; it cannot be set in the designer.

The background color of the control, which can be set

using standard HTML color identifiers, such as ―red‖ or

―blue,‖ or RGB values expressed in hex format (―#ffffff‖).

The border color of the control, which can be set using

standard HTML color identifiers, such as ―black‖ or

―red,‖ or RGB values expressed in hex format (―#ffffff‖).

The width of the control's border in pixels. Not fully sup

ported for all controls in browsers earlier than Internet

Explorer 4.0.

The border style, if there is any. Possible values are: Not-

Set, None, Dotted, Dashed, Solid, Double, Groove, Ridge,

Inset, and Outset.

The cascading style sheet (CSS) class to assign to the

control.

A list of all cascading style sheet (CSS) properties that are

applied to the specified HTML server control.

An attribute that disables the control when set to false.

This dims the control and makes it inactive. It doesn’t

hide the control.

The default of true, which enables themes for this

control.

The default of true, which enables view state persistence

for the control.

72

Chapter 2 Adding and Configuring Server Controls

Table 2-3 Common Web Server Control Properties

Property Description

Font An attribute that contains subproperties that you can

declare using the property-subproperty syntax in the

opening tag of a Web server control element. For exam

ple, you can make a Web server control’s text italic by

including the Font-Italic attribute in its opening tag.

ForeColor The foreground color of the control. It is not fully sup

ported for all controls in browsers earlier than Internet

Explorer 4.0.

Height The control’s height. It is not fully supported for all con

trols in browsers earlier than Internet Explorer 4.0.

SkinID The skin to apply to the control.

TabIndex The control’s position in the tab order. If this property is

not set, the control’s position index is 0. Controls with

the same tab index can be tabbed according to the order

in which they are declared in the Web page. This works

only in Internet Explorer 4.0 and later.

ToolTip The text that appears when the user hovers the mouse

pointer over a control. The ToolTip property does not

work in all browsers.

Width The width of the control. The possible units are: Pixel,

Point, Pica, Inch, Mm, Cm, Percentage, Em, and Ex. The

default unit is pixels.

Setting Properties in Source View In Source view, the properties of a Web server con

trol are set by adding the appropriate attributes to the Web server control’s element.

Consider the following Web server control button:

<asp:Button ID="btnWebButton"

runat="server"

Style=" position: absolute; top: 50px; left: 300px;"

Text="WebButton" />

Notice that this server control has different attributes from its HTML counterpart. For

example, the Text property on the Web server control coincides with the value prop

Lesson 1: Using a Server Control

73

erty on the HTML server control. The difference is an attempt to provide a consistent

programming model among Web server controls and Windows Forms controls. As

with HTML server controls, the ID property sets the programmatic identification. The

style attribute sets the location of the control, and the Text of WebButton displays on

the button face. The rendered HTML looks like the following:

<input id="btnWebButton"

type="submit"

name="btnWebButton"

value="WebButton"

style=" position: absolute; top: 50px; left: 300px;" />

Notice that the rendered HTML creates an HTML input element that is configured as

a submit button, and the value attribute becomes the Text property on the Web server

control. Also, if the name attribute is not explicitly set, the name attribute is automati

cally set to the ID.

Setting Properties in Design View In Design view, the properties of a Web control are

set by clicking the server control and modifying the desired properties in the Proper

ties window. Figure 2-8 shows the same button configured using the Properties win

dow. It’s rather interesting to note that the Style property is not available in the

Properties window. Changes that are made in the Properties window are reflected in

the Source view; changes in the Source view are reflected in the Properties window in

Design view.

Figure 2-8 Setting the Web server Button control properties using the Properties window.

74

Chapter 2 Adding and Configuring Server Controls

Setting Properties Programmatically in Code To set the properties of a Web server

control programmatically, use the dot notation to refer to the Web server control by its

ID property and specify the property that you wish to change. The following code was

added to the Page_Load event handler; it sets the visible and style properties of the but

ton that has the ID of btnWebButton.

'VB

btnWebButton.Visible = True

btnWebButton.Style.Add("position", "absolute")

btnWebButton.Style.Add("top", "200px")

btnWebButton.Style.Add("left", "350px")

//C#

btnWebButton.Visible = true

btnWebButton.Style.Add("position", "absolute");

btnWebButton.Style.Add("top", "200px");

btnWebButton.Style.Add("left", "350px");

Notice that the Style property is available for programmatic access and that changing

the top and left values causes the control to be relocated.

Controlling Automatic PostBack

Some server controls always cause a PostBack when a specific event occurs. For exam

ple, the Button control’s Click event always causes a PostBack. Other controls, such as

the TextBox, have events that do not cause an automatic PostBack, but they are config

urable to do so as required. For example, the TextBox contains a default event called

TextChanged. By default, the TextChanged event does not cause an automatic PostBack,

but the event is not lost. Instead, the event is raised when a different control, such as

a Button, causes a PostBack.

When working with events that do not cause automatic PostBacks, it’s important to

understand when these events are raised with regard to the Web page life cycle that

was defined in Table 2-1. Any postponed events, that is, events that do not cause auto

matic PostBacks, execute before the events that caused the PostBacks. For example, if

the text is changed in a TextBox and a Button is clicked, the Button causes a PostBack,

but the TextChanged event of the TextBox executes and then the Click event of the But

ton executes.

If you want to change a postponed event to an immediate event, set the AutoPostBack

property of the control to true. You can do so in the Properties window, via code, or by

adding the AutoPostBack="True" attribute to the Web server control element in Source

view.

Lesson 1: Using a Server Control

Working with Naming Containers and Child Controls

75

A Web page is made up of a hierarchy of controls. The System.Web.UI.Control class,

which is the class that the Web page and its controls inherit from, has a Controls col

lection property. This means that the Web page has a Controls collection, each of the

controls in that collection has its own Controls collection, and so on.

The Web page is a naming container for the controls that are added to it. A naming con

tainer defines a unique namespace for control names. Within a naming container,

every control must be uniquely identifiable. Typically, this is accomplished by assign

ing a unique value to the server control’s ID property. The ID is the programmatic

name of the control instance. For example, if you set the ID property of a Label control

to lblMessage, you can reference the control in code as lblMessage and there cannot be

another control in this naming container that has the ID of lblMessage.

Many data-bound controls, such as the GridView control, are containers for child con

trols. For example, when the GridView control is instantiated, it generates multiple

instances of child controls to represent the row and column data. How can multiple

GridView controls be added to a Web page, and then, when their child controls are cre

ated, each has its own unique ID property? This is because the GridView control is a

naming container.

The naming container for a given child control is a control above it (parent or higher)

in the hierarchy that implements the INamingContainer interface. A server control

implements this interface to create a unique namespace for populating the UniqueID

property values of its child server controls. The UniqueID property contains the fully

qualified name of the control. The difference between this property and the ID prop

erty is that the UniqueID property is generated automatically by the NamingContainer

and contains the NamingContainer information.

Searching for Controls If you want to locate a child control within a given Naming-

Container, use the FindControl method of the NamingContainer. The FindControl

method recursively searches the underlying child controls, but the searches do not

enter the Controls collection of any child control that is a NamingContainer. The fol

lowing code snippet shows how to find a control named lblMessage on the Web page.

'VB

Dim c As Control = FindControl("lblMessage")

//C#

Control c = FindControl("lblMessage");

76

Chapter 2 Adding and Configuring Server Controls

This code snippet may not have much value because you can simply access lblMes

sage directly by its ID. The FindControl method is most valuable when you need to

locate a control that has been dynamically created. If a control is created dynamically,

you are not able to directly reference it by its ID property. Instead, you need to find the

control, based on its ID property, and assign the returned value to a control variable

that you can use to access the control. For example, the GridView dynamically creates

its child controls using the format ―ctl‖ plus n, where n is a numeric index for each

control. To access a child control called ctl08, use the following code.

'VB

Dim c As Control = GridView1.FindControl("ctl08")

//C#

Control c = GridView1.FindControl("ctl08");

Quick Check

1. What property do you modify on a server control to minimize the size of

the ViewState data?

2. What happens in the OnInit method of a control?

3. If you are migrating ASP pages to ASP.NET, what type of server controls

would you use?

Quick Check Answers

1. Set EnableViewState to false.

2. Each child control of the current control is initialized.

3. Use HTML server control.

Lab: Exploring Web Page and Server Control Life Cycle Events

In this lab, you explore the Web page and server control life cycle events to gain an

understanding of these events.

� Exercise 1: Configuring Web page event handlers

In this exercise, you configure some of the Web page and server control events by add

ing event handlers for some of the primary events and running the Web page to dis

play the order of the events.

Lesson 1: Using a Server Control

77

1. Open Visual Studio 2005 and create a new Web site called LifeCycleEvents

using your preferred programming language. The new Web site is created and a

Web page called Default.aspx is displayed.

2. Double-click the Default.aspx Web page to create a Page_Load event handler.

3. In the Page_Load event handler, add the following code.

'VB

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

System.Diagnostics.Debug.Write("Page_Load
")

End Sub

//C#

protected void Page_Load(object sender, EventArgs e)

{

System.Diagnostics.Debug.Write("Page_Load
");

}

4. Use the following procedure to add event handlers for the PreInit, Init, PreRender,

and Unload events, placing Debug.Write code in each event handler that writes

the name of the event handler to the Debug window.

VB.NET

a. In the code-behind file, click the object drop-down list and click Page

Events, as shown in Figure 2-2.

b. Click the event drop-down list and click the desired event, which adds the

event handler code.

c. Add the following event handler code, taking care to replace the event han

dler name string with the actual name of the event handler.

 System.Diagnostics.Debug.Write("HandlerName")

d. Your code should look like the following:

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Init(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Init

 System.Diagnostics.Debug.WriteLine("Page_Init")

End Sub

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

78

Chapter 2 Adding and Configuring Server Controls

 System.Diagnostics.Debug.WriteLine("Page_Load")

End Sub

Protected Sub Page_PreInit(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.PreInit

 System.Diagnostics.Debug.WriteLine("Page_PreInit")

End Sub

Protected Sub Page_PreRender(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.PreRender

 System.Diagnostics.Debug.WriteLine("Page_PreRender")

End Sub

Protected Sub Page_Unload(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Unload

 System.Diagnostics.Debug.WriteLine("Page_Unload")

End Sub

End Class

C#

a. Type the code for each of the events. The code is in the following format,

but be sure to replace Event with the name of the event name:

protected void Page_Event(object sender, EventArgs e)

{

}

b. Add the following event handler code, taking care to place the event han

dler name in string:

 System.Diagnostics.Debug.Write("HandlerName");

c. Your code should look like the following:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

System.Diagnostics.Debug.WriteLine("Page_Load");

}

Lesson 1: Using a Server Control

79

}

protected void Page_Init(object sender, EventArgs e)

{

 System.Diagnostics.Debug.WriteLine("Page_Init");

}

protected void Page_PreRender(object sender, EventArgs e)

{

 System.Diagnostics.Debug.WriteLine("Page_PreRender");

}

protected void Page_PreInit(object sender, EventArgs e)

{

 System.Diagnostics.Debug.WriteLine("Page_PreInit");

}

protected void Page_Unload(object sender, EventArgs e)

{

 System.Diagnostics.Debug.WriteLine("Page_Unload");

}

5. Press F5 to run the Web application. You then receive a prompt stating that the

Web site cannot be debugged without adding a Web.config file with debugging

enabled. Click OK. The Web page is displayed, although it is blank because no

controls were added.

6. Locate the Output window in Visual Studio 2005. In the Output window, you

should see the following list of events. Notice the order of the events.

Page_PreInit

Page_Init

Page_Load

Page_PreRender

Page_Unload

82

Chapter 2 Adding and Configuring Server Controls

Lesson 2: Exploring Common Web Server Controls

ASP.NET 2.0 provides many Web server controls that can be used to increase produc

tivity. This lesson briefly covers some of the more common Web server controls.

After this lesson, you will be able to:

■ Use the Following Web server controls:

❑ Label

❑ TextBox

❑ Button

❑ CheckBox

❑ RadioButton

Estimated lesson time: 60 minutes

Real World

Glenn Johnson

A friend of mine asked me to review his Web site, so I navigated to his site and

did some exploring to get acquainted with it. It didn’t take long for me to see that

I was able to enter <script> tags into some of the TextBoxes on the site; and that

the script was stored in the database. When someone else visited the site, the

script was loaded from the database and executed. This Web site contained

numerous Cross Site Scripting (XSS) vulnerabilities that could be exploited to

allow hackers to steal users’ identity information.

Fortunately, the site wasn’t in production, so he was able to correct the problems

and avoid the embarrassment that this could have caused him and his company.

The Label Control

The Label control displays text at a specific location on the Web page using the prop

erties that the control has been assigned. Use the Label control when server code

changes the text or the properties. If you only need to display static text, use HTML or

the Literal control instead of using a Label control. The Literal control also displays

Lesson 2: Exploring Common Web Server Controls

83

text and the text can be changed by server code, but the Literal control does not sup

port styles, themes, and skins.

Labels can be used as the caption of the TextBox or other controls in a situation where

using the access key for the Label moves the focus to the control to the right of the

Label.

Security Alert Populating the Label control with data from an untrusted source can create Cross

Site Scripting (XSS) vulnerabilities. Use the HttpUtility.HtmlEncode or the Server.HtmlEncode method

to encode the untrusted data that is placed in the Text property.

To add a Label Web server control to a Web page, perform the following steps:

1. If you are in the Source view of the Web page, type an <asp:Label> element. If you

are in the Design view of the Web page, drag the Label control from the Standard

tab of the ToolBox to the Web page.

2. Set the control’s Text property. You can include HTML formatting in the prop

erty. For example, you can underline portions of the text by placing the <u>

element around the text.

The TextBox Control

The TextBox control collects text from the user. The Text property gets or sets the con

tents of the TextBox control.

The TextBox contains a TextMode property that you can set to SingleLine (default),

MultiLine, or Password. SingleLine allows the user to enter a single line of text, Multi-

Line allows the user to enter many lines of text, and Password creates a single-line text

box that masks the value entered by the user.

The Columns property sets the maximum width of the TextBox; the Rows property sets

the maximum height of a multiline TextBox.

The MaxLength property limits the number of characters that can be entered; the

Wrap property automatically continues the text on the next line when the end of the

text box is reached.

84

Chapter 2 Adding and Configuring Server Controls

The Button Control

The Button control displays a push button on the Web page that the user can click to

trigger a PostBack to the Web server. A Button can be either a submit (default) button

or a command button.

A submit button does not have its CommandName property set and simply performs

a PostBack to the server. You provide an event handler for the Click event to control

the actions performed when the user clicks the submit button.

You can use a Button as a command button by assigning a command name, such as

ChangeChannel or FastFoward, to the CommandName property. Using the Command-

Name property allows you to create multiple Button controls on a Web page; you can

programmatically determine which button is clicked in the event handler for the Com

mand event. You can also use the CommandArgument property to provide additional

information about the command to perform, such as ChannelUp, ChannelDown, x2

(FastForward x 2), or x3 (FastForward x 3). Simply provide an event handler for the

Command event to control the actions performed when a command button is clicked.

The Button control also contains a CausesValidation property that is set to true by

default, which causes page validation to be performed when a Button control is clicked.

Set the CausesValidation property to false when you want a button to bypass validation.

Reset and help buttons are examples of buttons that typically bypass validation.

The CheckBox Control

The CheckBox control gives the user the ability to select between true and false. The

CheckBox control’s Text property specifies its caption. Use the TextAlign property to

specify on which side that the caption appears. The Checked property is used to set

and get the status of the CheckBox control.

Security Alert Populating the CheckBox control’s Text property with data from an untrusted

source can create Cross Site Scripting (XSS) vulnerabilities. Use the HttpUtility.HtmlEncode or

Server.HtmlEncode method to encode the untrusted data that is placed in the Text property.

The CheckedChanged event is raised when the state of the CheckBox control changes,

but by default, the AutoPostBack property of the CheckBox control is set to false. This

means that changing the checked state does not cause a PostBack, but the Check-

Changed event is raised when another control performs a PostBack.

Lesson 2: Exploring Common Web Server Controls

Exam Tip If you need to create groups of CheckBox controls, consider using the CheckBoxList

85

control. The CheckBox provides better layout control, but the CheckBoxList control is easier to use

when binding with data.

The RadioButton Control

The RadioButton control gives the user the ability to select between mutually exclusive

RadioButton controls in a group. To group multiple RadioButton controls together,

specify the same GroupName for each RadioButton control. Grouping radio buttons

together only allows a mutually exclusive selection from the group.

Security Alert Populating the RadioButton control’s Text property with data from an untrusted

source can create Cross Site Scripting (XSS) vulnerabilities. Use the HttpUtility.HtmlEncode or

Server.HtmlEncode method to encode the untrusted data that is placed in the Text property.

The RadioButton control’s Text property specifies its caption. Use the TextAlign prop

erty to specify the side that the caption appears on. The Checked property is used to set

and get the status of the RadioButton control.

Exam Tip Be sure to also consider using the RadioButtonList. The RadioButton provides better lay

out control, but the RadioButtonList control is easier to use when binding with data.

Quick Check

1. What are the two types of Web server buttons that can be created?

2. How do you create a TextBox that retrieves a password from the user?

3. How do you make a CheckBox cause immediate PostBack?

Quick Check Answers

1. The two types of buttons are Submit and Command.

2. Set TextMode to Password.

3. Set its AutoPostBack property to true.

86

Chapter 2 Adding and Configuring Server Controls

Lab: Working With Web Server Controls

In this lab, you work with the Web server controls that are defined in this chapter.

� Exercise 1: Adding Controls to the Web Page

In this exercise, you add Web page controls to the Web page that was created in the

previous lab.

1. Open Visual Studio 2005 and open the Web site called LifeCycleEvents that you

created in the previous lab. Alternatively, you can open the completed Lesson 1,

Exercise 1 project from the CD.

2. Open the Default.aspx Web page in Design view.

3. Drag a Label, TextBox, Button, CheckBox, and three RadioButtons onto the Web

page. Change the Text properties of these controls to match Figure 2-9, which

shows how the Web page should look.

Figure 2-9 Drag Web server controls onto the Web page as shown.

4. Right-click the Web page and click View Code to open the code-behind page.

Notice that no additional code was added to the code-behind page.

5. Press F5 to run the Web application.

6. Try clicking the Button, CheckBox, and RadioButton controls. Observe the behav

ior of these controls. Notice that the Button is the only control that performs a

PostBack to the Web server. Also notice that the RadioButton controls are not

mutually exclusive.

Lesson 2: Exploring Common Web Server Controls

87

7. Double-click the Button control to add the Button’s Click event handler. Add the

following code to populate the Label with any text that has been typed into the

TextBox. Be sure to take the security warnings seriously and use the HtmlEncode

method. The code should look like the following.

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = Server.HtmlEncode(TextBox1.Text)

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

Label1.Text = Server.HtmlEncode(TextBox1.Text);

}

8. Double-click the CheckBox control to add the CheckedChanged event handler.

Add code to replace its Text property with the current date and time if the Check-

Box is selected. Your code should look like the following.

'VB

Protected Sub CheckBox1_CheckedChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged

If (CheckBox1.Checked) Then

 CheckBox1.Text = DateTime.Now.ToString()

End If

End Sub

//C#

protected void CheckBox1_CheckedChanged(object sender, EventArgs e)

{

if (CheckBox1.Checked)

{

 CheckBox1.Text = DateTime.Now.ToString();

}

}

9. To make the RadioButton controls mutually exclusive, these controls must have

the same GroupName property setting, as long as the setting is not empty. Assign

―MyGroup‖ to the GroupName property of all three RadioButton controls.

10. Add a single event handler for the CheckedChanged event of the three RadioButtons.

You can do so by selecting all three RadioButton controls, and then clicking the

lightning bolt icon in the Properties window to see the events that are available.

In the CheckedChanged event, type RadioChanged and press Enter. This adds an

88

Chapter 2 Adding and Configuring Server Controls

event hander to the code-behind page. In the event handler, add code to copy the

text of the selected RadioButton into the TextBox control. The event handler

should look like the following.

'VB

Protected Sub RadioChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles RadioButton1.CheckedChanged, _

 RadioButton2.CheckedChanged, _

 RadioButton3.CheckedChanged

Dim r As RadioButton = CType(sender, RadioButton)

TextBox1.Text = r.Text

End Sub

//C#

protected void RadioChanged(object sender, EventArgs e)

{

RadioButton r = (RadioButton)sender;

TextBox1.Text = r.Text;

}

11. Press F5 to run the Web application. The Web page is displayed.

12. Type something into the TextBox control and click the Button control. You

should see the contents of the TextBox control in the Label control.

13. Click the CheckBox several times. Notice that nothing seems to happen. Make

sure that the CheckBox is selected and then click the Button. Notice that the

CheckBox control’s Text property now contains the current date and time. The

CheckBox does not have AutoPostBack set to true.

14. Type different text into the TextBox. Click RadioButton2. Notice that nothing

happens because AutoPostBack is not enabled for the RadioButton controls. Click

the Button. Notice that the TextBox is updated to RadioButton2 and the Label also

contains RadioButton2. This behavior is predictable because the event that caused

the PostBack always follows the events that did not cause the AutoPostBack.

15. Select the CheckBox and the RadioButtons and set the AutoPostBack to true.

16. Press F5 to run the Web application. The Web page is displayed.

17. Click the CheckBox. Notice that this control performs a PostBack, and the date

and time are updated when the CheckBox is selected.

18. Click each of the RadioButton controls. Notice that these controls perform a Post-

Back and the TextBox is updated to show the RadioButton that was clicked.

Chapter 3

Exploring Specialized Server
Controls

It wasn’t that long ago when creating a calendar on a Web page was a time-consum

ing task involving the creation of Hypertext Markup Language (HTML) tables with

hyperlinks on each date and JavaScript to process the selection of a date. Today,

with ASP.NET, common tasks such as creating a calendar are simple drag-and-drop

operations.

The previous chapter provided an introduction to server controls and discussed some

of the common Web server controls. This chapter explores the more specialized con

trols that are available in ADO.NET 2.0.

Exam objectives in this chapter:

■ Add and configure Web server controls.

❑ Use the AdRotator Web server control to manage banners and pop-up

windows.

❑ Display a calendar on a Web page by using the Calendar Web server control.

❑ Implement the FileUpload Web server control.

❑ Display an image on a Web form by using the Image Web server control.

❑ Implement a button on a Web form by using the ImageButton Web server

control.

❑ Define hotspot regions within an image by using the ImageMap Web server

control.

❑ Display a hyperlink style button on a Web Form by using the LinkButton

Web server control.

❑ Display lists of information by using controls that derive from the ListControl

class.

95

http://ASP.NET

96

Chapter 3 Exploring Specialized Server Controls

❑ Create a Web Form with static text by using the Literal Web server control.

❑ Use the Panel Web server control to group controls on a page.

❑ Create a container for a group of View controls by using the MultiView Web

server control.

❑ Use the View Web server control.

❑ Construct a table by using the Table, TableRow, and TableCell Web server

controls.

❑ Create a wizard by using the Wizard Web server control to collect data

through multiple steps of a process.

❑ Use the XML Web server control to create Extensible Markup Language

(XML) data at the location of the control.

❑ Customize the appearance of ASP.NET server controls by using Web con

trol templates.

■ Implement data-bound controls.

❑ Use tabular data source controls to return tabular data.

❑ Use hierarchical data source controls to display hierarchical data.

❑ Display data by using simple data-bound controls.

❑ Display data by using composite data-bound controls.

❑ Display data by using hierarchical data-bound controls.

❑ Use the FormView control to display the values of a single table record from

a data source.

Lessons in this chapter:

■ Lesson 1: Exploring Specialized Web Server Controls. 98

■ Lesson 2: Working with Data-Bound Web Server Controls 155

Before You Begin

Before You Begin

97

To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic (VB) or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed with

SQL Server 2005 Express Edition and Internet Information Services (IIS).

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of HTML and client-side scripting.

■ Know how to create a new Web site.

■ Be able to add Web server controls to a Web page.

Real World

Glenn Johnson

I have seen many Web sites that attempt to collect lots of data by simply present

ing the user with a Web page that contains a vertical list of Label:TextBox

prompts. Many users become frustrated with the amount of data that needs to

be entered. As a result, these sites have a high rate of abandonment.

98

Chapter 3 Exploring Specialized Server Controls

Lesson 1: Exploring Specialized Web Server Controls

This lesson covers many of the specialized Web server controls, meaning controls that

don’t directly convert to single HTML tags and are in ASP.NET 2.0.

After this lesson, you will be able to:

■ Use the following Web server controls:

❑ Literal

❑ Table, TableRow, and TableCell

❑ Image

❑ ImageButton

❑ ImageMap

❑ Calendar

❑ FileUpload

❑ Panel

❑ MultiView

❑ View

❑ Wizard

Estimated lesson time: 60 minutes

The Literal Control

The Literal control is similar to the Label control, as both controls are used to display

static text on the Web page. The Literal control does not inherit from WebControl, as

shown in the Literal control’s object model in Figure 3-1. The Literal control does not

provide substantial functionality and does not add any HTML elements to the Web

page where the Label is rendered as a tag. This means that the Literal does not

have a Style property, and you cannot apply any styles, including positioning, to its

content.

Control

Class

Literal

Class

 Control

Properties

Mode

Text

Methods

AddParsedSubObject

CreateControlCollection

Focus

Literal

Render

Localize

Class

 Literal

Lesson 1: Exploring Specialized Web Server Controls

99

Figure 3-1 The Literal control object model.

Security Alert By default, populating the Literal control with data from untrusted sources can
create Cross Site Scripting (XSS) vulnerabilities. Set the Mode property to Encode to provide HTML

encoding of untrusted data that will be placed into the Text property.

The Literal control contains the Mode property, which is used to specify particular

handling of the content of the Text property, as shown in Table 3-1.

Table 3-1 The Literal Control’s Mode Property

Mode

PassThrough

Encode

Transform

Description

The Text content is rendered as is.

The Text content is HTML-encoded.

The Text content is converted to match the markup lan

guage of the requesting browser, such as HTML, Extensible

Hypertext Markup Language (XHTML), Wireless Markup

Language (WML), or Compact Hypertext Markup Lan

guage (cHTML). If the markup language is HTML or

XHTML, the content is passed through to the browser. For

other markup languages, invalid tags are removed.

100

Chapter 3 Exploring Specialized Server Controls

Take, for example, a Web page that was created and the words Transform,

PassThrough, and Encode were added. A Literal control was placed beside each of the

words. The following code was added to the code-behind page to demonstrate the use

of the Literal control and the effect of the Mode property:

'VB

Partial Class LiteralControl

 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 Literal1.Text = _

 "This is cool<script>alert(""Hi"");</script>"

 Literal2.Text = _

 "This is cool<script>alert(""Hi"");</script>"

 Literal3.Text = _

 "This is cool<script>alert(""Hi"");</script>"

 Literal1.Mode = LiteralMode.Transform

 Literal2.Mode = LiteralMode.PassThrough

 Literal3.Mode = LiteralMode.Encode

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class LiteralControl : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

 Literal1.Text =

 @"This is cool<script>alert(""Hi"");</script>";

 Literal2.Text =

 @"This is cool<script>alert(""Hi"");</script>";

 Literal3.Text =

 @"This is cool<script>alert(""Hi"");</script>";

 Literal1.Mode = LiteralMode.Transform;

 Literal2.Mode = LiteralMode.PassThrough;

 Literal3.Mode = LiteralMode.Encode;

}

}

Lesson 1: Exploring Specialized Web Server Controls

101

Figure 3-2 shows the rendered output of the Literal control when the Web page is dis

played. The alert message was displayed twice: once for Transform and once for

PassThrough.

Figure 3-2 Literal controls rendered using different Mode settings.

The best use for the Literal control is in scenarios where you want to render text and

controls directly into a page without any additional markup.

The Table, TableRow, and TableCell Controls

Tables provide a way to format information that is displayed on the Web page. The

information can be tabular data, but it can also consist of graphics and controls that

are to be displayed on the Web page.

NOTE .NET 2.0

The Table, TableRow, and TableCell controls are new in ASP.NET version 2.0.

Although you can configure the Table control to display static information while in

Design view, the Table control’s real power comes from the ability to programmati

cally add TableRow and TableCell controls at run time. If you only need to display static

information, consider using the HTML table tag instead.

Exam Tip An HtmlTable control can be created from the table tag by adding the runat="server"

attribute to the tag and assigning an ID to the control, but the Table control is easier to use because

it provides a programming model that is consistent with the TableRow and TableCell controls.

102

Chapter 3 Exploring Specialized Server Controls

If you need to programmatically add rows and cells to a table at run time, the Table

control may be the right choice, but TableRow and TableCell objects that are added to

the Table control need to be programmatically re-created when PostBack occurs. If you

need the rows and cells to survive PostBacks, you may want to consider using the

DataList or GridView control. As a result, the Table control is usually considered to be

best suited for control developers who use the table as part of a custom control that

they build.

Security Alert By default, populating the TableCell control with data from untrusted sources can

create XSS vulnerabilities. Be sure to HTML encode all data using either the Server.HtmlEncode or

the HttpUtility.HtmlEncode method.

The Table control provides an object model that is consistent with other Web con

trols. Figure 3-3 shows the Table control’s object model.

WebControl

Class

 Control

Table

Class

 WebControl

Properties

BackImageUrl

Caption
CaptionAlign

CellPadding
CellSpacing

GridLines
HorizontalAlign

Methods

AddAttributesToRender

CreateControlCollection

CreateControlStyle

RaisePostBackEvent

RenderBeginTag

RenderContents

Table

Nested Types

Rows

TableRow

Class
 WebControl

Properties

HorizontalAlign

TableSection
VerticalAlign

Methods

CreateControlCollection

CreateControlStyle
TableRow

Nested Types

Cells

Table
Class

 WebControl

Properties

AssociatedHeaderCellID

ColumnSpan
HorizontalAlign

RowSpan
Text

VerticalAlign
Wrap

Methods

AddAttributesToRender

AddParsedSubObject

CreateControlStyle

RenderContents

TableCell

Figure 3-3 The Table control’s object model.

Lesson 1: Exploring Specialized Web Server Controls

103

Notice that the Table control contains a Rows collection property, which is a collection

of TableRow controls. The TableRow control contains a Cells collection property, which

is a collection of TableCell controls. You can programmatically add and delete Table-

Rows and TableCells to these collections to build your Table control.

The Table, TableRow, and TableCell inherit from the WebControl class, which contains

format properties such as Font, BackColor, and ForeColor. If you set these properties at

the Table, you can override them in the TableRow, and the TableRow settings can be

overridden in the TableCell.

As mentioned earlier, if you are writing a custom control, the Table, TableRow, and

TableCell might be the classes for you, but if you are simply planning on dragging and

dropping the Table onto the Web page, you should consider using one of the other list

controls, such as the Repeater, DataList, or GridView, because these controls typically

render as HTML tables and provide more functionality.

Adding Rows and Cells Dynamically to a Table Control

The following steps show how to dynamically add TableCell and TableRow objects to

an existing Table control:

1. Create a TableRow object that corresponds to a row in the table.

2. Create a TableCell object and populate it with data by either setting the Text prop

erty or by adding controls to the TableCell object’s Controls collection.

3. Add the TableCell object that you created in step 2 to the TableRow object’s Cells

collection.

4. Repeat steps 2 and 3 for each cell that needs to be created in the row.

5. Add the TableRow objects that you created in step 1 to the Table object’s Rows col

lection.

6. Repeat steps 1 through 5, as necessary, for all rows and cells in the table.

In this example, a Web page was created and a Table control was added to the page.

The following code was added to the code-behind page to demonstrate the dynamic

addition of TableRow and TableCell controls to the Table control.

'VB

Partial Class Table__TableRow__and_TableCell_Controls

 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 Table1.BorderWidth = 1

104

Chapter 3 Exploring Specialized Server Controls

 For row As Integer = 0 To 4

 Dim tr As New TableRow()

 For column As Integer = 0 To 2

Dim tc As New TableCell()

tc.Text = String.Format("Row:{0} Cell:{1}", row, column)

tc.BorderWidth = 1

tr.Cells.Add(tc)

 Next column

 Table1.Rows.Add(tr)

 Next row

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Table__TableRow__and_TableCell_Controls : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 Table1.BorderWidth = 1;

 for (int row = 0; row < 5; row++)

{

 TableRow tr = new TableRow();

 for (int column = 0; column < 3; column++)

{

 TableCell tc = new TableCell();

 tc.Text = string.Format("Row:{0} Cell:{1}", row, column);

 tc.BorderWidth = 1;

 tr.Cells.Add(tc);

}

 Table1.Rows.Add(tr);

}

}

}

In the code example, notice that the code starts by setting the BorderWidth property of

the Table control to one that causes the Table to have a line around its outside edges.

The TableCell objects also have their BorderWidth set to one that causes each TableCell

to be outlined as well. When the Web page is displayed, it will look like the page

shown in Figure 3-4.

Lesson 1: Exploring Specialized Web Server Controls

105

Figure 3-4 This Web page shows the result of dynamically creating TableRow and TableCell controls.

The Image Control

The Image control is used to display an image on a Web page. This control generates

an element when rendering to HTML. The Image control inherits directly from

the Web control class, and the ImageMap and ImageButton inherit from the Image con

trol, as shown in Figure 3-5.

WebControl

Class

 Control

Image

Class

 WebControl

Properties

AlternateText

DescriptionUrl
Enabled

Font
GenerateEmptyAlternateText

ImageAlign
ImageUrl

Methods

AddAttributesToRender

Image

RenderContents

ImageMap

Class

 Image

ImageButton

Class

 Image

Figure 3-5 The Image control hierarchy.

106

Chapter 3 Exploring Specialized Server Controls

The Image control’s primary property, ImageUrl, indicates the path to the image that

is downloaded from the browser and displayed. This property maps directly to the

href attribute of the element in HTML. It’s important to understand that the

Image is not embedded to the Web page; instead, when the browser encounters the

 element with the href attribute, the browser initiates a separate request for the

image from the server.

The Image control also contains a property called AlternateText that you can set to dis

play a text message when the image is not available.

The Image control does not have a Click event, but in situations where the Click event

is necessary, you can use the ImageButton or ImageMap instead. These controls allow

you to retrieve the x- and y-coordinates of the user’s click as well.

The Image control is represented as the <asp:Image> element in the HTML source and

has no content, so you can write this element as a singleton (closing the tag with />

instead of using a separate closing tag).

The ImageAlign property can be set to NotSet, Left, Right, Baseline, Top, Middle, Bottom,

AbsBottom, AbsMiddle, or TextTop. These settings specify the alignment of the image in

relation to the other objects on the Web page.

The DescriptionUrl property is an accessibility feature that is used to provide further

explanation of the content and meaning of the image when using nonvisual page

readers. This property sets the longdesc attribute of the element that is gener

ated. This property should be set to the URL of a page that contains details of the

image in text or audio format.

Setting the GenerateEmptyAlternateText property to true will add the attribute alt="" to

the element that the Image control generates. From the accessibility perspec

tive, any image that does not contribute to the meaning of the page, such as a blank

image or a page-divider image, should always carry this attribute, which causes non

visual page readers to simply ignore the image.

Take the following example: A Web page was created and an Image control was

added to the page. Also, an image file called Girl.gif was added to a new folder called

images and an HTML page was created ImageDescription.htm, which contains a

description that can be used by nonvisual page readers. The following code was

added to the code-behind page to show how the Image control’s properties can be

set programmatically:

'VB

Partial Class Image_Control

 Inherits System.Web.UI.Page

Lesson 1: Exploring Specialized Web Server Controls

107

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 Image1.ImageUrl = "~/Images/Girl.gif"

 Image1.DescriptionUrl = "~/ImageDescription.htm"

 Image1.AlternateText = "This is a picture of a girl"

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Image_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 Image1.ImageUrl = "~/Images/Girl.gif";

 Image1.DescriptionUrl = "~/ImageDescription.htm";

 Image1.AlternateText = "This is a picture of a girl";

}

}

This code is simply setting properties. The tilde (~) indicates the current Web appli

cation folder. Figure 3-6 shows the rendered Web page, including the alternate text,

which is displayed as a ToolTip.

Figure 3-6 The rendered Image control displaying the AlternateText property as a ToolTip.

108

Chapter 3 Exploring Specialized Server Controls

The ImageButton Control

The ImageButton control is used to display a clickable image on a Web page that can

be used to post back to the Web server when the image is clicked. This control gener

ates an <input type="image"> element when rendering to HTML. The ImageButton con

trol inherits directly from the Image control class, as shown in Figure 3-7.

WebControl

Class

 Control

Image

Class

 WebControl

IPostBackDataHandler

IPostBackEventHandler

IButtonControl

ImageButton
Class

 Image

Properties

CausesValidation

CommandArgument
CommandName

Enabled
GenerateEmptyAlternateText

OnClientClick
PostBackUrl

TagKey
Text

ValidationGroup

Methods

AddAttributesToRender

GetPostBackOptions

ImageButton

LoadPostData

OnClick

OnCommand

OnPreRender

RaisePostBackEvent

RaisePostDataChangeEvent

Events

Click

Command

System.Web.UI.WebControls.IButtonControl.Click

Figure 3-7 The ImageButton control hierarchy.

Like the Image control, the ImageButton control’s primary property, ImageUrl, indi

cates the path to an image that can be downloaded from the browser and displayed.

This property maps directly to the src attribute of the <input> element in HTML.

Because the ImageButton inherits from the Image control, it also contains the Alternate-

Text, DescriptionUrl, ImageAlign, and GenerateEmptyAlternateText properties.

The ImageButton control has a Click and Command event that functions like the Button

control. The second argument of the Click event has a data type of ImageClickEvent

Lesson 1: Exploring Specialized Web Server Controls

Args, which lets you retrieve the x- and y-coordinates of the user’s click.

109

The ImageButton control is represented as the <asp:ImageButton> element in source

view and has no content, so you can write this element as a singleton element.

Here’s another example: A Web page was created and an ImageButton control was

added to the page. This control also uses the same image file called Girl.gif and HTML

page called ImageDescription.htm that were used in the previous Image control exam

ple. The following code was added to the code-behind page to show how the Image-

Button control’s properties can be set programmatically and the Click event can be

implemented.

'VB

Partial Class ImageButton_Control

 Inherits System.Web.UI.Page

Protected Sub ImageButton1_Click(ByVal sender As Object, ByVal e As

System.Web.UI.ImageClickEventArgs) Handles ImageButton1.Click

 ImageButton1.AlternateText = _

 String.Format("Button Clicked at {0},{1}", e.X, e.Y)

End Sub

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 ImageButton1.ImageUrl = "~/Images/Girl.gif"

 ImageButton1.DescriptionUrl = "~/ImageDescription.htm"

 ImageButton1.AlternateText = "This is a picture of a girl"

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class ImageButton_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 ImageButton1.ImageUrl = "~/Images/Girl.gif";

 ImageButton1.DescriptionUrl = "~/ImageDescription.htm";

 ImageButton1.AlternateText = "This is a picture of a girl";

}

protected void ImageButton1_Click(object sender, ImageClickEventArgs e)

110

Chapter 3 Exploring Specialized Server Controls

{

 ImageButton1.AlternateText =

 string.Format("Button Clicked at {0},{1}", e.X, e.Y);

}

}

This code sets the ImageButton control properties in the Page_Load event handler. In

the ImageButton1_Click event handler, the x- and y-coordinates are retrieved and

placed into the AlternateText property, as shown in Figure 3-8.

Figure 3-8 The rendered ImageButton displaying the AlternateText message after the ImageButton

was clicked.

The ImageMap Control

The ImageMap control is used to display a clickable image on a Web page that can be

used to post back to the Web server when the image is clicked. This control differs

from the ImageButton control in that the ImageMap control allows you to define

regions or ―hot spots‖ that cause PostBack, whereas clicking anywhere on the Image-

Button causes PostBack. This control generates an element.

In addition, a <map name="myMap"> element with nested <area> elements is also cre

ated when rendering to HTML. The ImageMap control inherits directly from the Image

control class, as shown in Figure 3-9.

Like the Image control, the ImageMap control’s primary property, ImageUrl, indicates

the path to the image that can be downloaded from the browser and displayed. This

property maps directly to the src attribute of the element in HTML.

Since the ImageMap inherits from the Image control, it also contains the AlternateText,

DescriptionUrl, ImageAlign, and GenerateEmptyAlternateText properties.

WebControl

Class

 Control

Image

ImageMap

Class

 Image

Properties

Lesson 1: Exploring Specialized Web Server Controls

HotSpot

MustInherit Class

Properties

111

Class

 WebControl

Enabled

HotSpotMode

Target

Methods

New

Events

?� Click

HotSpots AccessKey
AlternateText

HotSpotMode
NavigateUrl

PostBackValue
TabIndex

Target

Methods

GetCoordinates

ToString

CircleHotSpot

NotInheritable Class

 HotSpot

Properties

Radius

X

Y

Methods

GetCoordinates

New

PolygonHotSpot

NotInheritable Class

 HotSpot

Properties

Coordinates

Methods

GetCoordinates

New

RectangleHotSpot

NotInheritable Class

 HotSpot

Properties

Bottom

Left

Right

Top

Methods

GetCoordinates

New

Figure 3-9 The ImageMap and HotSpot control hierarchy.

The ImageMap control has a Click event that functions like the Button control. The sec

ond argument of the Click event has a data type of ImageMapEventArgs, which lets you

retrieve the PostBackValue of the associated hot spot that the user clicked.

In the source view, the ImageMap control is represented as the <asp:ImageMap> ele

ment and has nested hot spot elements that can be CircleHotSpot, RectangleHotSpot,

and PolygonHotSpot elements.

Working with HotSpot Controls

A hot spot is a predefined area on an image that can be clicked to perform an action.

Hot spots can be created to define areas on the image that are displayed by the

ImageMap control. You can define many overlapping areas, with each layer based on

the HotSpot definition order. The first HotSpot defined takes precedence over the last

112

Chapter 3 Exploring Specialized Server Controls

HotSpot defined. The HotSpot object model is shown in Figure 3-9. The classes that

inherit from the HotSpot are the CircleHotSpot, RectangleHotSpot, and PolygonHotSpot.

Table 3-2 contains the list of HotSpot properties.

Table 3-2 HotSpot Properties

Property Description

AccessKey A tool that specifies the keyboard shortcut for a HotSpot. You

can place only a single character into this property. If this

property contains ―C,‖ for example, a Web user can press

Alt+C to navigate to the HotSpot.

AlternateText The text that is displayed for a HotSpot when the image is

unavailable or renders to a browser that does not support

images. This also becomes the ToolTip.

HotSpotMode A tool that specifies the behavior of the HotSpot when it is

clicked. Can be NotSet, Inactive, Navigate, or PostBack.

NavigateUrl The URL to navigate to when a HotSpot object is clicked.

PostBackValue The string that is passed back to the Web server and is avail

able in the event argument data when the HotSpot is clicked.

TabIndex The tab index number of the HotSpot.

Target The target window or frame that displays the Web page and is

linked to the HotSpot.

Understanding the HotSpotMode Property

The HotSpotMode property is used to specify how the HotSpot behaves when the

HotSpot is clicked. You can specify the HotSpotMode on either the HotSpot or the

ImageMap control. If you set the HotSpotMode on the HotSpot and the ImageMap,

the HotSpot takes precedence. This means that you can specify the HotSpotMode on

the ImageMap control to set a default HotSpot behavior, but the HotSpotMode of the

HotSpot must be set to NotSet to inherit the behavior from the HotSpot.

Specifying Navigate for the HotSpotMode causes the HotSpot to navigate to a URL when

the HotSpot is clicked. The NavigateUrl property specifies the URL to navigate to.

NOTE HotSpotMode Default

Lesson 1: Exploring Specialized Web Server Controls

113

If the ImageMap and HotSpot have their HotSpotModes set to NotSet, the HotSpots default to Navigate.

Specifying PostBack for the HotSpotMode causes the HotSpot to generate a PostBack to

the server when the HotSpot is clicked. The PostBackValue property specifies a string

that is passed back to the Web server in the ImageMapEventArgs event data when the

HotSpot is clicked and the Click event is raised.

Specifying Inactive for the HotSpotMode indicates that the HotSpot does not have any

behavior when it is clicked. This is used to create an inactive HotSpot region within a

larger active HotSpot, thus allowing you to create complex HotSpot zones within an

ImageMap control. You must specify the inactive HotSpot before you designate the

active HotSpot in the ImageMap control.

In this example, a Web page was created and a Label and ImageMap control were

added to the page. The ImageMap control uses the same image file called Girl.gif and

HTML page called ImageDescription.htm that were used in the previous Image and

ImageButton control examples. The following code was added to the code-behind page

to show how the ImageMap control’s properties can be set programmatically and the

Click event can be implemented to display the HotSpot that is clicked.

'VB

Partial Class ImageMap_Control

 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 ImageMap1.ImageUrl = "~/Images/Girl.gif"

 ImageMap1.DescriptionUrl = "~/ImageDescription.htm"

 ImageMap1.AlternateText = "This is a picture of a girl"

 ImageMap1.HotSpotMode = HotSpotMode.PostBack

 Dim chs As CircleHotSpot

 Dim rhs As RectangleHotSpot

 Dim phs As PolygonHotSpot

 chs = New CircleHotSpot()

 chs.X = 75

 chs.Y = 75

 chs.Radius = 6

 chs.PostBackValue = "Left Eye Center"

 ImageMap1.HotSpots.Add(chs)

 chs = New CircleHotSpot()

 chs.X = 100

 chs.Y = 75

 chs.Radius = 6

114

Chapter 3 Exploring Specialized Server Controls

 chs.PostBackValue = "Right Eye Center"

 ImageMap1.HotSpots.Add(chs)

 phs = New PolygonHotSpot()

 phs.Coordinates = "76,57,82,64,81,76,76,82,71,76,70,63"

 phs.PostBackValue = "Left Eye"

 ImageMap1.HotSpots.Add(phs)

 phs = New PolygonHotSpot()

 phs.Coordinates = "99,57,105,64,104,76,99,82,94,76,93,63"

 phs.PostBackValue = "Right Eye"

 ImageMap1.HotSpots.Add(phs)

 rhs = New RectangleHotSpot()

 rhs.Top = 101

 rhs.Bottom = 110

 rhs.Left = 74

 rhs.Right = 110

 rhs.PostBackValue = "Mouth"

 ImageMap1.HotSpots.Add(rhs)

 phs = New PolygonHotSpot()

 phs.Coordinates = "92,82,101,95,85,95"

 phs.PostBackValue = "Nose"

 ImageMap1.HotSpots.Add(phs)

 phs = New PolygonHotSpot()

 phs.Coordinates = _

"28,150,17,141,10,129,22,57,46,21,80,9," _

 + "103,9,129,22,141,47,152,93,152,142,144,156," _

 + "135,154,128,142,129,71,117,47,93,34,69,34," _

 + "51,56,42,81,44,140"

 phs.PostBackValue = "Hair"

 ImageMap1.HotSpots.Add(phs)

 chs = New CircleHotSpot()

 chs.X = 87

 chs.Y = 81

 chs.Radius = 50

 chs.PostBackValue = "Face"

 ImageMap1.HotSpots.Add(chs)

 rhs = New RectangleHotSpot()

 rhs.Top = 127

 rhs.Bottom = 142

 rhs.Left = 69

 rhs.Right = 107

 rhs.PostBackValue = "Neck"

 ImageMap1.HotSpots.Add(rhs)

End Sub

Protected Sub ImageMap1_Click(ByVal sender As Object, ByVal e As

System.Web.UI.WebControls.ImageMapEventArgs) Handles ImageMap1.Click

Lesson 1: Exploring Specialized Web Server Controls

 Label1.Text = "You clicked the " + e.PostBackValue

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class ImageMap_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 ImageMap1.ImageUrl = "~/Images/Girl.gif";

 ImageMap1.DescriptionUrl = "~/ImageDescription.htm";

 ImageMap1.AlternateText = "This is a picture of a girl";

 ImageMap1.HotSpotMode = HotSpotMode.PostBack;

 CircleHotSpot chs;

 RectangleHotSpot rhs;

 PolygonHotSpot phs;

 chs = new CircleHotSpot();

 chs.X = 75;

 chs.Y = 75;

 chs.Radius = 6;

 chs.PostBackValue = "Left Eye Center";

 ImageMap1.HotSpots.Add(chs);

 chs = new CircleHotSpot();

 chs.X = 100;

 chs.Y = 75;

 chs.Radius = 6;

 chs.PostBackValue = "Right Eye Center";

 ImageMap1.HotSpots.Add(chs);

 phs = new PolygonHotSpot();

 phs.Coordinates = "76,57,82,64,81,76,76,82,71,76,70,63";

 phs.PostBackValue = "Left Eye";

 ImageMap1.HotSpots.Add(phs);

 phs = new PolygonHotSpot();

 phs.Coordinates = "99,57,105,64,104,76,99,82,94,76,93,63";

 phs.PostBackValue = "Right Eye";

 ImageMap1.HotSpots.Add(phs);

115

116

Chapter 3 Exploring Specialized Server Controls

 rhs = new RectangleHotSpot();

 rhs.Top = 101;

 rhs.Bottom = 110;

 rhs.Left = 74;

 rhs.Right = 110;

 rhs.PostBackValue = "Mouth";

 ImageMap1.HotSpots.Add(rhs);

 phs = new PolygonHotSpot();

 phs.Coordinates = "92,82,101,95,85,95";

 phs.PostBackValue = "Nose";

 ImageMap1.HotSpots.Add(phs);

 phs = new PolygonHotSpot();

 phs.Coordinates =

 "28,150,17,141,10,129,22,57,46,21,80,9,"

 + "103,9,129,22,141,47,152,93,152,142,144,156,"

 + "135,154,128,142,129,71,117,47,93,34,69,34,"

 + "51,56,42,81,44,140";

 phs.PostBackValue = "Hair";

 ImageMap1.HotSpots.Add(phs);

 chs = new CircleHotSpot();

 chs.X = 87;

 chs.Y = 81;

 chs.Radius = 50;

 chs.PostBackValue = "Face";

 ImageMap1.HotSpots.Add(chs);

 rhs = new RectangleHotSpot();

 rhs.Top = 127;

 rhs.Bottom = 142;

 rhs.Left = 69;

 rhs.Right = 107;

 rhs.PostBackValue = "Neck";

 ImageMap1.HotSpots.Add(rhs);

}

protected void ImageMap1_Click(object sender, ImageMapEventArgs e)

{

 Label1.Text = "You clicked the " + e.PostBackValue;

}

}

In the sample code, clicking a HotSpot on the ImageMap causes a PostBack of the Post-

BackValue to the server. The ImageMapEventArgs contains the PostBackValue, which is

placed into the Text property of the Label. Notice that many HotSpot objects overlap in

this example. For example, the center of each eye overlaps the rest of that eye, and the

eyes overlap the face. The hair also overlaps the face, and the face overlaps the neck.

Lesson 1: Exploring Specialized Web Server Controls

117

Remember that the HotSpot objects that are added first override the later HotSpots in

the ImapeMap control’s HotSpots collection. Figure 3-10 shows the ImageMap after the

hair has been clicked.

Figure 3-10 The rendered ImageMap displaying the PostBackValue message in the Label after the

hair was clicked on the ImageMap.

The Calendar Control

The Calendar control displays a calendar for either the current month or a selected

month. It allows the user to select dates and move to the next or previous month.

The SelectionChanged event causes a PostBack when the user selects a new date, and

the VisibleMonthChanged event causes a PostBack when the user selects a different

month to be viewed. This is a complex Web server control that generates a <table>

element when rendering to HTML. The Calendar control inherits directly from the

WebControl class, as shown in Figure 3-11.

The Calendar control is represented as the <asp:Calendar> element in source view and

can contain style elements to change the look of the control.

The Calendar control has a DayRender event that allows you to add text or controls to

the day being rendered. This allows you to use the Calendar control to display

appointments and other controls for any date by inserting these items into the day

that is being rendered.

118

Chapter 3 Exploring Specialized Server Controls

Calendar CalendarDay

Class Class

 Web Control

Properties
Properties

Date
Caption

DayNumberText
CaptionAlign

IsOtherMonth
CellPadding
CellSpacing
DayHeaderStyle
DayNameFormat
DayStyle
FirstDayOfWeek
NextMonthText
NextPrevFormat
NextPrevStyle
OtherMonthDayStyle
PrevMonthText
SelectedDate
SelectedDates
SelectedDayStyle
SelectionMode
SelectMonthText
SelectorStyle
SelectWeekText
ShowDayHeader
ShowGridLines
ShowNextPrevMonth

ShowTitle
TitleFormat
TitleStyle
TodayDayStyle
TodaysDate
UseAccessibleHeader
VisibleDate
WeekendStyle

Methods

Calendar

CreateControlCollection

HasWeekSelectors
LoadViewState

OnDayRender
OnPreRender

OnSelectionChanged
OnVisibleMonthChanged

RaisePostBackEvent
Render

SaveViewState
TrackViewState

Events

DayRender

SelectionChanged

VisibleMonthChanged

IsSelectable

IsSelected
IsToday

IsWeekend

Methods

CalendarDay

Figure 3-11 The Calendar control hierarchy.

Lesson 1: Exploring Specialized Web Server Controls

119

The Calendar control contains many properties that can be used to adjust the format

and behavior of this control. Table 3-3 contains a list of the Calendar properties and

their associated descriptions.

Table 3-3 Calendar Properties

Calendar Property

Caption

CaptionAlign

CellPadding

CellSpacing

DayHeaderStyle

DayNameFormat

DayStyle

FirstDayOfWeek

NextMonthText

NextPrevFormat

NextPrevStyle

OtherMonthDayStyle

PrevMonthText

Description

The text that is rendered in the Calendar.

The alignment of the caption: Top, Bottom, Left, Right, or

NotSet.

The space between each cell and the cell border.

The spacing between each cell.

The style to be applied to days of the week.

The format for the names of the days of the week: First-

Letter, FirstTwoLetters, Full, Short, Shortest.

The default style for a calendar day.

The day of the week to display in the first column of the

Calendar control.

The text to be displayed in the next month navigation

control; ―>‖ is the default. This only works if ShowNext-

PrevMonth property is true.

The tool that sets the format of the next and previous

navigation controls. Can be set to CustomText (default),

FullMonth (for example, January), or ShortMonth (for

example, Jan).

The style to be applied to the next and previous naviga

tion controls.

The tool that specifies the style for days on the calendar

that are displayed and are not in the current month.

The text to be displayed in the previous month naviga

tion control, which defaults as “<”. This only works if the

ShowNextPrevMonth property is true.

120

Chapter 3 Exploring Specialized Server Controls

Table 3-3 Calendar Properties

Calendar Property Description

SelectedDate The date selected by the user. Can also be set by the user.

SelectedDates A collection of DataTime values that represent all of the

dates that were selected by the user. This property con

tains only a single date if the SelectionMode property is

set to CalendarSelectionMode.Day, which allows only

single date selection.

SelectedDayStyle The style of the selected day.

SelectionMode A value that indicates how many dates can be selected.

Value can be Day, DayWeek, DayWeekMonth, or None.

SelectMonthText The text displayed for the month selection column. The

default value is “>>”.

SelectorStyle The style for the week and month selectors.

SelectWeekText The text of the week selection in the week selector.

ShowDayHeader An indicator that shows whether the day header should

be displayed.

ShowGridLines An indicator that tells whether grid lines should be

displayed.

ShowNextPrevMonth An indicator for whether the next and previous month

selectors should be displayed.

ShowTitle An indicator for whether the title should be displayed.

TitleFormat A tool that sets the format for displaying the month

(Month), or the month and year (MonthYear).

TitleStyle The style for the title.

TodayDayStyle The style of the today’s date.

TodaysDate Today’s date.

Table 3-3 Calendar Properties

Lesson 1: Exploring Specialized Web Server Controls

121

Calendar Property

UseAccessibleHeader

VisibleDate

WeekendDayStyle

Description

A control which, when set to true, generates <th> for day

headers (default), or, when set to false, generates <td>

for day headers to be compatible with 1.0 of .NET

Framework.

A display that specifies which month to display in the

Calendar control.

The style of weekend days.

The Calendar control can be used to select a single date, or multiple dates. The

SelectionMode property can be set to one of the following settings:

■ Day Allows selection of a single date.

■ DayWeek Allows the selection of either a single date or a complete week.

■ DayWeekMonth Allows selection of single date, a complete week, or the whole

month.

■ None Does not allow you to select any date.

After a selection is made, the SelectionChanged event handler lets you access the

selected dates via the SelectedDates property. The SelectedDate property simply points

to the date in SelectedDates collection.

Many people think that the Calendar control is only used as a date picker control,

but the Calendar control can also be used to display a schedule. The trick to using

the Calendar control to display scheduled items and special days is to make the con

trol large enough to display text in each day, and then add Label controls (or other

controls) to the Cell object’s Controls collection in the DayRender event handler.

The following example shows how a Calendar control can be used as a schedule dis

play showing special days. In this example, a Web page was created and a Calendar

control was added to the page. The following code was added to the code-behind page

to show how the Calendar control’s properties can be set programmatically and the

Calendar control events can be used.

'VB

Partial Class Calendar_Control

 Inherits System.Web.UI.Page

122

Chapter 3 Exploring Specialized Server Controls

Dim schedule As New Hashtable()

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 GetSchedule()

 Calendar1.Style.Add("position", "absolute")

 Calendar1.Style.Add("left", "5px")

 Calendar1.Style.Add("top", "50px")

 Calendar1.Caption = "Special Days"

 Calendar1.FirstDayOfWeek = WebControls.FirstDayOfWeek.Sunday

 Calendar1.NextPrevFormat = NextPrevFormat.ShortMonth

 Calendar1.TitleFormat = TitleFormat.MonthYear

 Calendar1.ShowGridLines = True

 Calendar1.DayStyle.HorizontalAlign = HorizontalAlign.Left

 Calendar1.DayStyle.VerticalAlign = VerticalAlign.Top

 Calendar1.DayStyle.Height = New Unit(75)

 Calendar1.DayStyle.Width = New Unit(100)

 Calendar1.OtherMonthDayStyle.BackColor = System.Drawing.Color.WhiteSmoke

 Calendar1.TodaysDate = New DateTime(2006, 12, 1)

 Calendar1.VisibleDate = Calendar1.TodaysDate

End Sub

Private Sub GetSchedule()

 schedule("11/23/2006") = "Thanksgiving"

 schedule("12/5/2006") = "Birthday"

 schedule("12/16/2006") = "First day of Chanukah"

 schedule("12/23/2006") = "Last day of Chanukah"

 schedule("12/24/2006") = "Christmas Eve"

 schedule("12/25/2006") = "Christmas"

 schedule("12/26/2006") = "Boxing Day"

 schedule("12/31/2006") = "New Year's Eve"

 schedule("1/1/2007") = "New Year's Day"

End Sub

Protected Sub Calendar1_SelectionChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Calendar1.SelectionChanged

 Response.Write("Selection changed to: " _

+ Calendar1.SelectedDate.ToShortDateString())

End Sub

Protected Sub Calendar1_VisibleMonthChanged(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.MonthChangedEventArgs) _

 Handles Calendar1.VisibleMonthChanged

 Response.Write("Month changed to: " + e.NewDate.ToShortDateString())

End Sub

Protected Sub Calendar1_DayRender(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.DayRenderEventArgs) _

 Handles Calendar1.DayRender

 If Not schedule(e.Day.Date.ToShortDateString()) Is Nothing Then

 Dim lit = New Literal()

 lit.Visible = True

 lit.Text = "
"

 e.Cell.Controls.Add(lit)

 Dim lbl = New Label()

 lbl.Visible = True

Lesson 1: Exploring Specialized Web Server Controls

123

 lbl.Text = CType(schedule(e.Day.Date.ToShortDateString()), String)

 e.Cell.Controls.Add(lbl)

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Calendar_Control : System.Web.UI.Page

{

Hashtable schedule = new Hashtable();

protected void Page_Load(object sender, EventArgs e)

{

 GetSchedule();

 Calendar1.Style.Add("position", "absolute");

 Calendar1.Style.Add("left", "5px");

 Calendar1.Style.Add("top", "50px");

 Calendar1.Caption = "Special Days";

 Calendar1.FirstDayOfWeek = FirstDayOfWeek.Sunday;

 Calendar1.NextPrevFormat = NextPrevFormat.ShortMonth;

 Calendar1.TitleFormat = TitleFormat.MonthYear;

 Calendar1.ShowGridLines = true;

 Calendar1.DayStyle.HorizontalAlign = HorizontalAlign.Left;

 Calendar1.DayStyle.VerticalAlign = VerticalAlign.Top;

 Calendar1.DayStyle.Height = new Unit(75);

 Calendar1.DayStyle.Width = new Unit(100);

 Calendar1.OtherMonthDayStyle.BackColor =

 System.Drawing.Color.WhiteSmoke;

 Calendar1.TodaysDate = new DateTime(2006, 12, 1);

 Calendar1.VisibleDate = Calendar1.TodaysDate;

}

private void GetSchedule()

{

 schedule["11/23/2006"] = "Thanksgiving";

 schedule["12/5/2006"] = "Birthday";

 schedule["12/16/2006"] = "First day of Chanukah";

124

Chapter 3 Exploring Specialized Server Controls

 schedule["12/23/2006"] = "Last day of Chanukah";

 schedule["12/24/2006"] = "Christmas Eve";

 schedule["12/25/2006"] = "Christmas";

 schedule["12/26/2006"] = "Boxing Day";

 schedule["12/31/2006"] = "New Year's Eve";

 schedule["1/1/2007"] = "New Year's Day";

}

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

 Response.Write("Selection changed to: "

+ Calendar1.SelectedDate.ToShortDateString());

}

protected void Calendar1_VisibleMonthChanged(object sender,

 MonthChangedEventArgs e)

{

 Response.Write("Month changed to: " + e.NewDate.ToShortDateString());

}

protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)

{

 Literal lit = new Literal();

 lit.Visible = true;

 lit.Text = "
";

 e.Cell.Controls.Add(lit);

 if (schedule[e.Day.Date.ToShortDateString()] != null)

{

 Label lbl = new Label();

 lbl.Visible = true;

 lbl.Text = (string)schedule[e.Day.Date.ToShortDateString()];

 e.Cell.Controls.Add(lbl);

}

}

}

This code sets the Calendar control properties, such as style and size, in the Page_Load

event handler. A method called GetSchedule is added to populate a collection of spe

cial dates. In the Calendar1_DayRender event handler, the Date and Cell of the day

that is being rendered is available. If a special date is found, a Label is created that con

tains the special date, and it is added to the Cell object’s Controls collection. When the

Web page is displayed, the special dates are rendered on the Calendar controls, as

shown in Figure 3-12.

Lesson 1: Exploring Specialized Web Server Controls

125

Figure 3-12 The rendered Calendar control displaying special days and having a selected date.

The FileUpload Control

The FileUpload control is used to display a TextBox and Browse button that allows

a user to either type a file name and path, or click Browse and select a file and path.

This control generates an <input type="file"> element when rendering to HTML. The

FileUpload control inherits directly from the WebControl class, as shown in Figure 3-13.

The FileUpload control is represented as the <asp:FileUpload> element in source view

and has no content, so you can write this element as a singleton element.

The FileUpload control does not cause a PostBack to the Web server. After the user

selects a file, the user needs to cause a PostBack via a different control, such as a Button.

The PostBack causes the file to be uploaded to the server as posted data. At the server,

the page code does not run until the file is uploaded to server memory.

126

Chapter 3 Exploring Specialized Server Controls

WebControl

Class

 Control

FileUpload

Class

 WebControl

Properties

FileBytes

FileContent

FileName

HasFile

PostedFile

Methods

AddAttributesToRender

FileUpload

OnPreRender

Render

SaveAs

Figure 3-13 The FileUpload control hierarchy.

The following properties give you flexible ways to access the uploaded file:

■ FileBytes The file is exposed as a byte array.

■ FileContent The file is exposed as a stream.

■ PostedFile The file is exposed as an object of type HttpPostedFile. This object has

properties, such as ContentType and ContentLength properties.

You need to examine any file that is uploaded to determine if it should be saved; you

can examine characteristics such as the file name, size, and MIME type. MIME stands

for Multipurpose Internet Mail Extensions and specifies the type of file that is being

uploaded. When you’re ready to save the file, you can use the SaveAs method on the

FileUpload control or the HttpPostedFile object.

You can save the file in any location for which you have permissions to create files. By

default, the requireRootedSaveAsPath attribute of the httpRuntime configuration ele

ment in the Web.config file is set to true, which means that you need to provide an

absolute path to save the file. You can get an absolute path by using the MapPath

method of the HttpServerUtility class and passing to the method the tilde (~) operator,

which represents the application root folder.

Lesson 1: Exploring Specialized Web Server Controls

127

The maximum size file that can be uploaded depends on the value of the MaxRequest-

Length attribute of the httpRuntime configuration element in the Web.config file. If

users attempt to upload a file that is larger than the MaxRequestLength, the upload

fails.

Security Alert The FileUpload control allows users to upload files but makes no attempt to vali

date the safety of the uploaded files. The FileUpload control doesn’t provide a means to filter the

file types that can be uploaded by a user, but you can examine the file characteristics, such as the

file name and extension, as well as the ContentType, after the file has been uploaded.

Although you can provide client-side script to examine the file that is being submitted, remember

that client-side validation is a convenience for the honest user. A hacker can easily strip the Web

page of client-side code to bypass this validation.

In this example, a Web page was created and a FileUpload control was added to the

page. In addition, a Button was added to the Web page that is used to submit the file

to the Web server via PostBack. A folder was added to the Web site called Uploads. The

following code was added to the code-behind page to show how the FileUpload con

trol’s properties can be set programmatically, and a file can be uploaded and saved.

'VB

Partial Class FileUpload_Control

 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 If (FileUpload1.HasFile) Then

 Label1.Text = "File Length: " _

+ FileUpload1.FileBytes.Length.ToString() _

+ "
" _

+ "File Name: " _

+ FileUpload1.FileName _

+ "
" _

+ "MIME Type: " _

+ FileUpload1.PostedFile.ContentType

 FileUpload1.SaveAs(_

MapPath("~/Uploads/" + FileUpload1.FileName))

 Else

 Label1.Text = "No file received."

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

128

Chapter 3 Exploring Specialized Server Controls

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class FileUpload : System.Web.UI.Page

{

protected void Button1_Click(object sender, EventArgs e)

{

 if (FileUpload1.HasFile)

{

 Label1.Text = "File Length: "

+ FileUpload1.FileBytes.Length

+ "
"

+ "File Name: "

+ FileUpload1.FileName

+ "
"

+ "MIME Type: "

+ FileUpload1.PostedFile.ContentType;

 FileUpload1.SaveAs(

MapPath("~/Uploads/" + FileUpload1.FileName));

}

 else

{

 Label1.Text = "No file received.";

}

}

}

The Web page is shown in Figure 3-14. When a file is selected and the Submit button

is clicked, the code checks to see if a file has been uploaded. If a file has been

uploaded, information about the file is placed into the Label control for display. The

file is then saved to the Uploads folder. The Web site requires an absolute path, and

MapPath performs the conversion from the relative path supplied to an absolute path.

Finally, the file is saved.

Lesson 1: Exploring Specialized Web Server Controls

Figure 3-14 The FileUpload control after uploading a file.

The Panel Control

129

The Panel control is used as a control container and is useful when you have controls

that you want to display and hide as a group. The Panel generates a <div> element

when rendering as HTML. In source view, the Panel control is represented as the

<asp:Panel> element and can contain many controls. The Panel control inherits

directly from the WebControl class, as shown in Figure 3-15.

WebControl
Class

 Control

Panel

Class

 WebControl

Properties

BackImageUrl

DefaultButton

Direction

GroupingText

HorizontalAlign

ScrollBars

Wrap

Methods

AddAttributesToRender

CreateControlStyle

Panel

RenderBeginTag

RenderEndTag

Figure 3-15 The Panel control hierarchy.

The BackImageUrl property can be used to display a background image in the Panel

control. The HorizontalAlignment property lets you set the horizontal alignment of the

130

Chapter 3 Exploring Specialized Server Controls

controls that are in the Panel, and the Wrap property specifies whether items in the

Panel automatically continue on the next line when a line is longer than the width of

the Panel control. The DefaultButton property specifies the button that is clicked when

the Panel control has focus and the user presses the Enter key. The DefaultButton prop

erty can be set to the ID of any control that implements the IButtonControl interface.

In this example, a Web page was created and a Panel control was added to the page.

A Label control, a TextBox control, and a Button control were inserted into the Panel. In

addition, a Button was added to the Web page that is used to toggle the Visible prop

erty’s state of the Panel control, and Button controls were added to move the Panel left

or right.

'VB

Partial Class Panel_Control

 Inherits System.Web.UI.Page

Protected Sub Button2_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

 Panel1.Visible = Not Panel1.Visible

End Sub

Protected Sub Button3_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

 Dim left As New Unit(Panel1.Style("left"))

 left = New Unit(CType(left.Value, Double) - 10, left.Type)

 Panel1.Style("left") = left.ToString()

End Sub

Protected Sub Button4_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button4.Click

 Dim left As New Unit(Panel1.Style("left"))

 left = New Unit(CType(left.Value, Double) + 10, left.Type)

 Panel1.Style("left") = left.ToString()

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Panel_Control : System.Web.UI.Page

{

}

Lesson 1: Exploring Specialized Web Server Controls

protected void Button2_Click(object sender, EventArgs e)

{

 Panel1.Visible = !Panel1.Visible;

}

protected void Button3_Click(object sender, EventArgs e)

{

 Unit left = new Unit(Panel1.Style["left"]);

 left = new Unit((double)left.Value - 10,left.Type);

 Panel1.Style["left"] = left.ToString();

}

protected void Button4_Click(object sender, EventArgs e)

{

 Unit left = new Unit(Panel1.Style["left"]);

 left = new Unit((double)left.Value + 10, left.Type);

 Panel1.Style["left"] = left.ToString();

}

131

The example Web page is shown in Figure 3-16. Clicking the Show/Hide button hides

the Panel and all of its controls, and clicking again displays the Panel and its controls.

When the Move Left or Move Right buttons are clicked, the current location of the

Panel control is retrieved from the Style property and updated to move the Panel and

its controls.

Figure 3-16 The Panel control with buttons to toggle visibility and move the Panel control.

The MultiView and View Controls

The View control is a control container; it’s useful when you have controls that you

want to display and hide as a group. It is also helpful when you hide one View con

trol with its controls, because then you typically show a different View control. View

132

Chapter 3 Exploring Specialized Server Controls

controls are contained in a MultiView control. The MultiView and the View don’t gen

erate any elements when rendering as HTML because these controls are essentially

server-side controls that manage the visibility of the child controls. In source view,

the MultiView control is represented as the <asp:MultiView> element, and the View

control is represented as the <asp:View> element. The MultiView and View controls

inherit directly from the Control class, as shown in Figure 3-17.

Control

Class

MultiView View

Class Class

 Control Control

Fields Properties

NextViewCommandName

PreviousViewCommandName

SwitchViewByIDCommandName

SwitchViewByIndexCommandName

Properties

ActiveViewIndex

EnableTheming

Methods

AddParsedSubObject

CreateControlCollection

GetActiveView

LoadControlState

MultiView

OnActiveViewChanged

OnBubbleEvent

OnInit

RemovedControl

Render

SaveControlState

SetActiveView

Events

ActiveViewChanged

Views

EnableTheming

Visible

Methods

OnActivate

OnDeactivate

View

Events

Activate

Deactivate

Figure 3-17 The MultiView and View control hierarchy.

NOTE .NET 2.0

The MultiView and View controls are new in ASP.NET version 2.0.

Lesson 1: Exploring Specialized Web Server Controls

133

You can use the ActiveViewIndex property or the SetActiveView method to change the

View programmatically. If the ActiveViewIndex is set to -1, no View controls are dis

played. If you pass an invalid View or a null (Nothing) value into the SetActiveView

method, an HttpException is thrown. Note that only one View control can be active at

any time.

The MultiView control is also used to create wizards, where each View control in the

MultiView control represents a different step or page in the wizard.

The MultiView control is also suitable for use when developing multiple-screen appli

cations for mobile devices, as the MultiView control provides the same functionality as

the ASP.NET mobile Form control in .NET Framework version 1.1.

In this example, a Web page was created and a MultiView control and three View con

trols were added to the page. Next, a Button control was added to each of the View con

trols. The Button controls were staggered within each View control to visually help

identify the current active View control. The Text property of the Button control was set

to Button1, Button2, and Button3, respectively, as shown in Figure 3-18.

Figure 3-18 The MultiView and View control Web page contains a Button in each View.

After the controls were added to the Web page, the following code was added to the

code-behind page:

'VB

Partial Class MultiView_and_View_Controls

 Inherits System.Web.UI.Page

134

Chapter 3 Exploring Specialized Server Controls

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 MultiView1.ActiveViewIndex = 1

End Sub

Protected Sub Button2_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

 MultiView1.ActiveViewIndex = 2

End Sub

Protected Sub Button3_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

 MultiView1.SetActiveView(CType(Me.FindControl("View1"), View))

End Sub

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 If (Not IsPostBack) Then

 MultiView1.ActiveViewIndex = 0

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class MultiView_and_View_Controls : System.Web.UI.Page

{

protected void Button1_Click(object sender, EventArgs e)

{

 MultiView1.ActiveViewIndex = 1;

}

protected void Button2_Click(object sender, EventArgs e)

{

 MultiView1.ActiveViewIndex = 2;

}

protected void Button3_Click(object sender, EventArgs e)

{

 MultiView1.SetActiveView((View)MultiView1.FindControl("View1"));

}

}

Lesson 1: Exploring Specialized Web Server Controls

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

{

 MultiView1.ActiveViewIndex = 0;

}

}

135

When the Web page is displayed, only Button1 is visible, as shown in Figure 3-19.

Clicking Button1 changes the active view to View2, which displays Button2. Clicking

Button2 changes the active view to View3, which displays Button3. Clicking Button3

changes the active view back to View1, which displays Button1.

Figure 3-19 The MultiView is used to switch between the View controls.

The Wizard Control

The Wizard control is a complex control that is used to display a series of WizardStep

controls to a user, one after the other. Probably the most significant use of the Wizard

control is to prompt the user for a significant amount of data by breaking the data into

136

Chapter 3 Exploring Specialized Server Controls

logical chunks, or steps, and presenting the user with the steps that can be validated,

either at the end or between steps. You certainly can accomplish the same result by

using separate Web pages for each logical chunk of data, but the Wizard consolidates

the data collection process into a single Web page.

More Info For more information about the Wizard control, visit http://msdn2.microsoft.com

/en-us/library/fs0za4w6.aspx.

You can programmatically control which step is displayed, which means that you are

not constrained to navigating through the steps in a linear fashion.

The Wizard control builds on the MultiView and View controls, providing logic to

assure that only one WizardStep control is visible at a time and providing the ability to

customize most aspects of the Wizard and WizardStep controls.

NOTE .NET 2.0

The Wizard control is new in ASP.NET version 2.0.

The Wizard control inherits from the Control class, and the BaseWizardStep inherits

from View, as shown in Figure 3-20. The Wizard control has a WizardSteps collection

of steps that contains the user interface for each step that is created by the developer.

The built-in navigation capabilities determine which buttons to display based on the

StepType value.

The Wizard control contains a header area that can be customized to display informa

tion specific to the step that the user is currently on. The Wizard control also con

tains a sidebar area that can be used to quickly navigate to steps in the control. As

you can see from the many styles than can be assigned to parts of the Wizard con

trol, the Wizard control can be significantly customized.

http://msdn2.microsoft.com/
http://msdn2.microsoft.com/

View

Class

CompositeControl

Abstract Class

 WebControl

Lesson 1: Exploring Specialized Web Server Controls

Wizard

Class
 CompositeControl

Fields

CancelCommandName
MoveCompleteCommandName

MoveNextCommandName

MovePreviousCommandName

MoveToCommandName

Properties

137

 Control

WizardStepBase

Abstract Class
 View

Properties

ActiveStepIndex

CancelButtonImageUrl
CancelButtonStyle
CancelButtonText

CancelButtonType
CancelDestinationPageUrl
CellPadding
CellSpacing
DisplayCancelButton
DisplaySideBar

AllowReturn

EnableTheming

ID
Name
StepType

Title
Wizard

Methods

LoadViewState
OnLoad
RenderChildren
WizardStepBase

TemplatedWizardStep

Class
 WizardStepBase

Properties

ContentTemplate

ContentTemplateContainer

CustomNavigationTemplate

WizardSteps

ActiveStep

FinishCompleteButtonImageUrl

FinishCompleteButtonStyle

FinishCompleteButtonText
FinishCompleteButtonType

FinishDestinationPageUrl
FinishNavigationTemplate
FinishPreviousButtonImageUrl
FinishPreviousButtonStyle

FinishPreviousButtonText
FinishPreviousButtonType
HeaderStyle
HeaderTemplate
HeaderText

NavigationButtonStyle
NavigationStyle
SideBarButtonStyle
SideBarStyle
SideBarTemplate
SkipLinkText
StartNavigationTemplate

StartNextButtonImageUrl

StartNextButtonStyle
StartNextButtonText
StartNextButtonType
StepNavigationTemplate

StepNextButtonImageUrl

CustomNavigationTemplateContainer

SkinID

Methods

TemplatedWizardStep

WizardStep
Sealed Class

 WizardStepBase

Methods

WizardStep

StepNextButtonStyle
StepNextButtonText

StepNextButtonType

StepPreviousButtonImageUrl
StepPreviousButtonStyle
StepPreviousButtonText

StepPreviousButtonType
StepStyle
TagKey

Methods

GetHistory

GetStepType

MoveTo

Events

ActiveStepChanged
CancelButtonClick

FinishButtonClick

NextButtonClick

PreviousButtonClick

SidebarButtonClick

Figure 3-20 The Wizard and WizardStep control hierarchy.

138

Chapter 3 Exploring Specialized Server Controls

The BaseWizardStep contains the StepType property that can be set to one of the fol

lowing values:

■ WizardStepType.Auto This renders navigation buttons based on the location of

the set within the WizardSteps collection property of the Wizard. This is the

default.

■ WizardStepType.Complete This is the last step to appear. No navigation buttons

are rendered.

■ WizardStepType.Finish This is the final data-collection step; the Finish and Pre

vious buttons are rendered for navigation.

■ WizardStepType.Start This is the first one to appear, and only the Next button is

rendered.

■ WizardStepType.Step This is a step between the Start and the Finish step. The

Previous and Next buttons are rendered.

This is an example of a wizard that gives the user the ability to select options when

selecting a vehicle. In a typical real vehicle-selection scenario, many more options are

available, thus dictating the need to simplify the option selection for the user.

To create this example, a Web page was created and a Wizard control was added to the

page. WizardStep controls were added for exterior, interior, options, and summary.

The exterior selection step contains three RadioButton controls for selection of red,

blue, or black exterior. The interior selection step contains two RadioButton controls

for selection of leather or cloth seats. The options selection step contains CheckBox

controls for selection of AM/FM radio, heated seats, and air freshener. The summary

step contains a Label control that is populated with the selections that were made in

the previous steps. The populated WizardStep controls are shown in Figure 3-21.

Lesson 1: Exploring Specialized Web Server Controls

139

Figure 3-21 The WizardStep controls are populated with the controls to be displayed to the user.

After the WizardStep controls were created and each step was populated, code was

added to the code-behind page to populate the Label control in the summary step.

Also, code was added to the Form_Load event handler to assure that the Wizard starts

at the first step, and finally, code was added to the Wizard1_FinishButtonClick event

handler to display the results. The code-behind page is as follows:

'VB

Partial Class Wizard_Control

Inherits System.Web.UI.Page

Protected Sub Wizard1_FinishButtonClick(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) Handles

Wizard1.FinishButtonClick

 Wizard1.Visible = False

 Response.Write("Finished
" + Label1.Text)

End Sub

Protected Sub Wizard1_NextButtonClick(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) Handles

Wizard1.NextButtonClick

 If (Wizard1.WizardSteps(e.NextStepIndex).Title = "Summary") Then

 Label1.Text = String.Empty

 For Each ws As WizardStep In Wizard1.WizardSteps

For Each c As Control In ws.Controls

 If (TypeOf c Is System.Web.UI.WebControls.CheckBox) Then

 Dim cb As CheckBox = CType(c, CheckBox)

 If (cb.Checked) Then

140

Chapter 3 Exploring Specialized Server Controls

 Label1.Text += cb.Text + "
"

 End If

 End If

Next

 Next

 End If

End Sub

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles Me.Load

 If Not IsPostBack Then

 Wizard1.ActiveStepIndex = 0

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Wizard_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

{

 Wizard1.ActiveStepIndex = 0;

}

}

protected void Wizard1_FinishButtonClick(object sender,

 WizardNavigationEventArgs e)

{

 Wizard1.Visible = false;

 Response.Write("Finished
" + Label1.Text);

}

protected void Wizard1_NextButtonClick(object sender,

 WizardNavigationEventArgs e)

{

 if (Wizard1.WizardSteps[e.NextStepIndex].Title == "Summary")

{

 Label1.Text = String.Empty;

 foreach (WizardStep ws in Wizard1.WizardSteps)

}

}

}

 {

}

Lesson 1: Exploring Specialized Web Server Controls

foreach (Control c in ws.Controls)

{

 if (c is CheckBox)

{

 CheckBox cb = (CheckBox)c;

 if (cb.Checked)

{

 Label1.Text += cb.Text + "
";

}

}

}

141

When the Web page is displayed, the user sees the first (Exterior) step, as shown in

Figure 3-21. The user can go from step to step, and finally, press the Finish button. In

the Summary step, the Label control displays the current selections. After the user

presses the Finish button, the Wizard control is hidden and the summary information

is displayed.

The Xml Control

The Xml control is used to display the contents of an XML document or the results of

executing an Extensible Stylesheet Language (XSL) Transform. The Xml control hier

archy is shown in Figure 3-22.

The XML document to display is specified by setting either the DocumentSource prop

erty or the DocumentContent property. The DocumentSource property accepts a string

that specifies the location of an XML file to be loaded into the control. The Document-

Content property accepts a string that contains actual XML content. If the Document-

Content and the DocumentSource are both set, the last property that is set is the

property that is used.

The TransformSource property accepts an optional string that contains the location of

an XSL transformation file to apply to the XML document. The Transform property

accepts a Transform object that can be used to perform the transformation as well. If

both of these properties are set, the last property set is used.

The Xml control also contains the TransformArgumentList property, which is used to

pass arguments to the XSL transformation.

142

Chapter 3 Exploring Specialized Server Controls

Control
Class

Xml

Class

 Control

Properties

ClientID

Controls

Document

DocumentContent

DocumentSource

EnableTheming

SkinID

Transform

TransformArgumentList

TransformSource

XPathNavigator

Methods

FindControl

Focus

HasControls

Xml

Figure 3-22 The Xml control hierarchy.

The following is an example of using the Xml control to display the contents of an

XML file after applying an XSL transformation. This XML file and the XSL transfor

mation file are as follows:

XML File – CarList.xml
<?xml version="1.0" encoding="utf-8" ?>

<CarList>

<Car Vin="1A59B" Make="Chevrolet" Model="Impala" Year="1963" Price="1125.00" />

 <Car Vin="9B25T" Make="Ford" Model="F-250" Year="1970" Price="1595.00" />

 <Car Vin="3H13R" Make="BMW" Model="Z4" Year="2006" Price="55123.00" />

<Car Vin="7D67A" Make="Mazda" Model="Miata" Year="2003" Price="28250.00" />

 <Car Vin="4T21N" Make="VW" Model= "Beetle" Year="1956" Price="500.00" />

</CarList>

XSL Transformation File – CarList.xsl
<?xml version="1.0" encoding="utf-8" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:msxsl="urn:schemas-microsoft-com:xslt"

xmlns:labs="http://labs.com/mynamespace">

<xsl:template match="/">

 <html>

 <head>

Lesson 1: Exploring Specialized Web Server Controls

143

<title>Car List</title>

 </head>

 <body>

<center>

 <h1>Car List</h1>

 <xsl:call-template name="CreateHeading"/>

</center>

 </body>

 </html>

</xsl:template>

<xsl:template name="CreateHeading">

 <table border="1" cellpadding="5">

 <tr >

<th bgcolor="yellow">

 VIN

</th>

<th bgcolor="yellow">

 Make

</th>

<th bgcolor="yellow">

 Model

</th>

<th bgcolor="yellow">

 Year

</th>

<th bgcolor="yellow">

 Price

</th>

 </tr>

 <xsl:call-template name="CreateTable"/>

 </table>

</xsl:template>

<xsl:template name="CreateTable">

 <xsl:for-each select="/CarList/Car">

 <tr>

<td align="center">

 <xsl:value-of select="@Vin"/>

</td>

144

Chapter 3 Exploring Specialized Server Controls

<td align="center">

 <xsl:value-of select="@Make"/>

</td>

<td>

 <xsl:value-of select="@Model"/>

</td>

<td>

 <xsl:value-of select="@Year"/>

</td>

<td align="right">

 <xsl:value-of select="format-number(@Price,'$#,##0.00')"/>

</td>

 </tr>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

In this example, an Xml control was added to a Web page and the following code

was added to the code-behind page to display the XML file after applying the XSL

transformation:

'VB

Partial Class Xml_Control

 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 Xml1.DocumentSource = "~/App_Data/CarList.xml"

 Xml1.TransformSource = "~/App_Data/CarList.xsl"

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Xml_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 Xml1.DocumentSource = "~/App_Data/CarList.xml";

 Xml1.TransformSource = "~/App_Data/CarList.xsl";

}

}

mailto:select=

Lesson 1: Exploring Specialized Web Server Controls

145

When the Web page is displayed, the XML and XSL files are loaded and the resulting

transformation is shown in Figure 3-23.

Figure 3-23 The result of applying the XSL transformation to the XML file.

Quick Check

1. What control provides the best implementation of a schedule of special

dates?

2. You want to create a Web page that prompts the user to input lots of data,

and you want the data input to be spread across multiple screens. What is

the best control to use to implement this solution on a single Web page?

3. Your customer wants the home page to contain an image of the world and

require users to click their specific countries. This redirects the users to the

Web sites for their respective countries. What control will you use?

Quick Check Answers

1. The Calendar control

2. The Wizard control

3. The ImageMap control

146

Chapter 3 Exploring Specialized Server Controls

Lab: Work with Specialized Web Controls

In this lab, you use the specialized Web controls that have been defined in this lesson

to create a Web page for selecting a room in your house that needs to be serviced and

a service date.

� Exercise 1: Create the Web Site and Add the Controls

In this exercise, you create the Web site and add the controls to the site.

1. Open Microsoft Visual Studio 2005 and create a new Web site, called UsingSpe

cializedControls, using your preferred programming language. Create the new

Web site so that a Web page called Default.aspx is displayed.

2. Add a Wizard control to the Default.aspx Web page so that it displays the Wizard

Tasks window.

3. In the Wizard Tasks window, click Add/Remove Wizard Steps to display the

WizardStep Collection Editor.

4. Change the Title property of step 1 to Select Room.

5. Change the Title property of step 2 to Service Date.

6. Click the Add button to add another step and change its Title property to Sum

mary. Click OK to close the WizardStep Collection Editor.

7. In the Solution Explorer window, right-click the project node and click New

Folder. Rename the folder Images.

8. Add the following files to the Images folder. These files are available in sample

code on this book’s CD-ROM.

❑ House Dining Room.gif

❑ House Family Rooom.gif

❑ House Foyer.gif

❑ House Kitchen.gif

❑ House Office.gif

❑ House.gif

9. In Design view, click the Wizard control, set the Height property to 250px, and

set the Width property to 425px.

Lesson 1: Exploring Specialized Web Server Controls

147

10. In Design view, click the link for Select Room in the Wizard control to assure that

this is the current step.

11. Add an ImageMap control to this step. After adding the ImageMap control, press

Enter twice and type Room Selected:. After the text, add a Label control and

remove its text from the Text property. Regardless of the language you choose,

your ASPX source for this step should look like the following:

ASPX Source – Select Room
<asp:WizardStep runat="server" Title="Select Room">

<asp:ImageMap ID="ImageMap1" runat="server"

 ImageUrl="~/Images/House.gif">

</asp:ImageMap>

Room Selected:

<asp:Label ID="Label1" runat="server"></asp:Label>

</asp:WizardStep>

12. In Design view, click the Service Date link in the Wizard control to make this the

active step.

13. In this step, press Enter, type Select Service Date:, and press Enter again. Add a

Calendar control. Your ASPX source for this step should look like the following:

ASPX Source – Service Date
<asp:WizardStep runat="server" Title="Service Date">

Select Service Date:

<asp:Calendar ID="Calendar1" runat="server" >

</asp:Calendar>

</asp:WizardStep>

14. In Design view, click the Summary link in the Wizard control to make this the

active step.

In this step, add a Label control and size it to the fill the WizardStep control. Your

ASPX source for this step should look like the following:

ASPX Source – Service Date
<asp:WizardStep runat="server" Title="Summary">

<asp:Label ID="Label2" runat="server" Height="225px" Width="325px">

</asp:Label>

</asp:WizardStep>

15. In the Wizard Tasks window, click AutoFormat. Click Professional and click OK.

The final result is shown in Figure 3-24.

148

Chapter 3 Exploring Specialized Server Controls

Figure 3-24 The completed Wizard user interface.

� Exercise 2: Add to the Code-Behind Page

In this exercise, you add code to the code-behind page to initialize the Wizard and the

ImageMap hot spots and display a summary after the Wizard has completed its

actions.

1. In Design view, double-click an empty area of the Web page to go to the code-

behind page and insert the Page_Load event handler.

2. In the Page_Load event handler, add an if statement that tests whether the Web

page is posted back. Inside the if statement, add code to set the ActiveStepIndex

of the Wizard to the first WizardStep. Also add code to set the HotSpot mode of

the ImageMap to perform a PostBack. Finally, declare a local RectangularHotSpot

Lesson 1: Exploring Specialized Web Server Controls

variable and add code to create hot spots, as described in Table 3-4.

Table 3-4 RectangularHotSpot Controls

149

PostBackValue

Kitchen

Family Room

Dining Room

Office

Foyer

Left

4

113

4

176

113

Top

3

3

73

73

73

Right

113

286

113

286

176

Bottom

73

73

160

160

160

3. In Design view, double-click the ImageMap to create the ImageMap1_Click event

handler in the code-behind page. Add code to this method that places the Post-

BackValue into Label2. Also add code that changes the ImageUrl of the ImageMap

to display the current room that has been selected.

4. In Design view, double-click the Wizard to add the Wizard1_FinishButtonClick

event handler in the code-behind page. In this method, add code to hide the Wiz

ard and display a thank-you message.

5. In Design view, select the Wizard and click the Events button in the Properties

window. Double-click the ActiveStepChanged event to add the Wizard1_Active-

StepChanged event handler. Add code to this method to find out if the active step

is the summary, and if it is, populate Label2 with a message that shows the cur

rent selection. Your final code-behind page should look like the following:

'VB

Partial Class _Default

 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 If (Not IsPostBack) Then

 Wizard1.ActiveStepIndex = 0

 ImageMap1.HotSpotMode = HotSpotMode.PostBack

 Dim hs As RectangleHotSpot

 hs = New RectangleHotSpot()

 hs.PostBackValue = "Kitchen"

 hs.Left = 4

 hs.Top = 3

 hs.Right = 113

 hs.Bottom = 73

 ImageMap1.HotSpots.Add(hs)

 hs = New RectangleHotSpot()

150

Chapter 3 Exploring Specialized Server Controls

 hs.PostBackValue = "Family Room"

 hs.Left = 113

 hs.Top = 3

 hs.Right = 286

 hs.Bottom = 73

 ImageMap1.HotSpots.Add(hs)

 hs = New RectangleHotSpot()

 hs.PostBackValue = "Dining Room"

 hs.Left = 4

 hs.Top = 73

 hs.Right = 113

 hs.Bottom = 160

 ImageMap1.HotSpots.Add(hs)

 hs = New RectangleHotSpot()

 hs.PostBackValue = "Office"

 hs.Left = 176

 hs.Top = 73

 hs.Right = 286

 hs.Bottom = 160

 ImageMap1.HotSpots.Add(hs)

 hs = New RectangleHotSpot()

 hs.PostBackValue = "Foyer"

 hs.Left = 113

 hs.Top = 73

 hs.Right = 176

 hs.Bottom = 160

 ImageMap1.HotSpots.Add(hs)

 End If

End Sub

Protected Sub ImageMap1_Click(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.ImageMapEventArgs) _

 Handles ImageMap1.Click

 Label1.Text = e.PostBackValue

 ImageMap1.ImageUrl = "~/Images/House " _

+ e.PostBackValue + ".gif"

End Sub

Protected Sub Wizard1_FinishButtonClick(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _

 Handles Wizard1.FinishButtonClick

 Wizard1.Visible = False

 Response.Write("Thank you for your order")

End Sub

Protected Sub Wizard1_ActiveStepChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles Wizard1.ActiveStepChanged

 If (Wizard1.ActiveStep.Title = "Summary") Then

 Label2.Text = "Summary Info:
" _

+ "Room: " + Label1.Text + "
" _

+ "Delivery Date: " _

+ Calendar1.SelectedDate.ToShortDateString()

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

Lesson 1: Exploring Specialized Web Server Controls

151

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

{

 Wizard1.ActiveStepIndex = 0;

 ImageMap1.HotSpotMode = HotSpotMode.PostBack;

 RectangleHotSpot hs;

 hs = new RectangleHotSpot();

 hs.PostBackValue = "Kitchen";

 hs.Left = 4;

 hs.Top = 3;

 hs.Right = 113;

 hs.Bottom = 73;

 ImageMap1.HotSpots.Add(hs);

 hs = new RectangleHotSpot();

 hs.PostBackValue = "Family Room";

 hs.Left = 113;

 hs.Top = 3;

 hs.Right = 286;

 hs.Bottom = 73;

 ImageMap1.HotSpots.Add(hs);

 hs = new RectangleHotSpot();

 hs.PostBackValue = "Dining Room";

 hs.Left = 4;

 hs.Top = 73;

 hs.Right = 113;

 hs.Bottom = 160;

 ImageMap1.HotSpots.Add(hs);

 hs = new RectangleHotSpot();

 hs.PostBackValue = "Office";

 hs.Left = 176;

 hs.Top = 73;

 hs.Right = 286;

 hs.Bottom = 160;

152

Chapter 3 Exploring Specialized Server Controls

 ImageMap1.HotSpots.Add(hs);

 hs = new RectangleHotSpot();

 hs.PostBackValue = "Foyer";

 hs.Left = 113;

 hs.Top = 73;

 hs.Right = 176;

 hs.Bottom = 160;

 ImageMap1.HotSpots.Add(hs);

}

}

protected void Wizard1_FinishButtonClick(

 object sender, WizardNavigationEventArgs e)

{

 Wizard1.Visible = false;

 Response.Write("Thank you for your order");

}

protected void Wizard1_ActiveStepChanged(

 object sender, EventArgs e)

{

 if (Wizard1.ActiveStep.Title=="Summary")

{

 Label2.Text = "Summary Info:
"

+ "Room: " + Label1.Text + "
"

+ "Delivery Date: "

+ Calendar1.SelectedDate.ToShortDateString();

}

}

protected void ImageMap1_Click(

 object sender, ImageMapEventArgs e)

{

 Label1.Text = e.PostBackValue;

 ImageMap1.ImageUrl = "~/Images/House "

+ e.PostBackValue + ".gif";

}

}

6. Test the Web page by pressing F5 to display the page.

7. Try clicking each room and observe the results. You should see the image and

the label should update to show the selected room.

8. Click the Service Date link or the Next button to display the Calendar control.

Click a date.

9. Click the Summary link or the Next button to display a summary of your selections.

10. Click the Finish button to see the thank-you message.

Lesson 2: Working with Data-Bound Web Server Controls

155

Lesson 2: Working with Data-Bound Web Server Controls

The next chapter covers ADO.NET and XML, so we need to cover data-bound con

trols in this chapter so we can use them in the examples for ADO.NET and XML.

This lesson explores data binding and the Web server controls that are used in

ASP.NET 2.0 to bind, or connect, to data.

After this lesson, you will be able to:

■ Use the following Web server controls:

❑ ListControl, and its child classes

❑ AdRotator

❑ XML

❑ GridView

❑ FormView

❑ TreeView

❑ Menu

Estimated lesson time: 60 minutes

Using a Collection to Perform Data-Binding

To keep things simple, the examples in this lesson use a collection of Car objects that

can be bound to a control. The Car class is shown in the following code sample:

'VB

Imports Microsoft.VisualBasic

Imports System.Collections.Generic

Public Class Car

Public Sub New(ByVal vin As String, ByVal make As String, _

 ByVal model As String, ByVal year As Integer, _

 ByVal price As Decimal)

 Me.Vin = vin : Me.Make = make : Me.Model = model

 Me.Year = year : Me.Price = price

End Sub

Public Property Vin() As String

 Get

 Return _vin

 End Get

 Set(ByVal value As String)

 _vin = value

 End Set

156

Chapter 3 Exploring Specialized Server Controls

End Property

Private _vin As String

Public Property Make() As String

 Get

 Return _make

 End Get

 Set(ByVal value As String)

 _make = value

 End Set

End Property

Private _make As String

Public Property Model() As String

 Get

 Return _model

 End Get

 Set(ByVal value As String)

 _model = value

 End Set

End Property

Private _model As String

Public Property Year() As Decimal

 Get

 Return _year

 End Get

 Set(ByVal value As Decimal)

 _year = value

 End Set

End Property

Private _year As Decimal

Public Property Price() As Decimal

 Get

 Return _price

 End Get

 Set(ByVal value As Decimal)

 _price = value

 End Set

End Property

Private _price As Decimal

Public Shared Function GetList() As List(Of Car)

 Dim carList As New List(Of Car)

 carList.Add(New Car("1A59B", "Chevrolet", "Impala", 1963, 1125.0))

 carList.Add(New Car("9B25T", "Ford", "F-250", 1970, 1595.0))

 carList.Add(New Car("3H13R", "BMW", "Z4", 2006, 55123.0))

 carList.Add(New Car("7D67A", "Mazda", "Miata", 2003, 28250.0))

 carList.Add(New Car("4T21N", "VW", "Beetle", 1956, 500.0))

 Return carList

End Function

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

Lesson 2: Working with Data-Bound Web Server Controls

157

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Collections.Generic;

/// <summary>

/// Summary description for Car

/// </summary>

public class Car

{

public Car() { }

public Car(string vin, string make, string model, int year, decimal price)

{

 Vin = vin; Make = make; Model = model; Year = year; Price = price;

}

public string Vin

{

 get { return vin; }

 set { vin = value; }

}

private string vin;

public string Make

{

 get { return make; }

 set { make = value; }

}

private string make;

public string Model

{

 get { return model; }

 set { model = value; }

}

private string model;

public int Year

{

 get { return year; }

 set { year = value; }

}

158

Chapter 3 Exploring Specialized Server Controls

private int year;

public decimal Price

{

 get { return price; }

 set { price = value; }

}

private decimal price;

public static List<Car> GetList()

{

 List<Car> carList = new List<Car>();

 carList.Add(new Car("1A59B","Chevrolet", "Impala", 1963, 1125.00M));

 carList.Add(new Car("9B25T","Ford", "F-250", 1970, 1595.00M));

 carList.Add(new Car("3H13R","BMW", "Z4", 2006, 55123.00M));

 carList.Add(new Car("7D67A","Mazda", "Miata", 2003, 28250.00M));

 carList.Add(new Car("4T21N","VW", "Beetle", 1956, 500.00M));

 return carList;

}

}

Notice that the GetList method returns a list of Car objects that can be used as needed.

Introducing Data-Bound Controls

Data-bound controls are controls that need to bind, or connect, to data. The data-

bound controls are classified as simple, composite, or hierarchical controls. Simple

data-bound controls are the controls that inherit from the ListControl and the AdRotator

controls. Composite data-bound controls are classes that inherit from Composite-

DataBoundControl, such as the GridView, DetailsView, and FormsView controls. Hier

archical data-bound controls are the Menu and TreeView controls.

The .NET framework provides several base classes that are used to provide common

properties and behavior for the concrete data-bound controls. Figure 3-25 shows the

hierarchy of the base classes.

The HierarchicalDataBoundControl inherits from the BaseDataBoundControl and is the

parent class to controls that display hierarchical data, such as the Menu and TreeView

controls.

The DataBoundControl inherits from the BaseDataBoundControl and is the parent class

to the CompositeDataBoundControl and the ListControl, which are parent classes to

other controls that display tabular data, such as the GridView and DropDownList. The

DataBoundControl control’s DataMember property is a string data type that is used

when the DataSource contains more than one tabular result set. In this scenario,

Lesson 2: Working with Data-Bound Web Server Controls

159

the DataMember property is set to the name of the tabular result set that is to be

displayed.

WebControl

Class

 Control

BaseDataBoundControl

Abstract Class

 WebControl

Properties

DataSource

DataSourceID

Methods

DataBind

Events

DataBound

HierarchicalDataBoundControl

Abstract Class

 BaseDataBoundControl

Properties

DataSourceID

DataBoundControl

Abstract Class

 BaseDataBoundControl

Properties

DataMember

DataSourceID

ListControl

Abstract Class

 DataBoundControl

Properties

AppendDataBoundItems

AutoPostBack

CausesValidation

DataTextField

DataTextFormatString

DataValueField

Items

SelectedIndex

SelectedItem

SelectedValue

Text

ValidationGroup

Methods

ClearSelection

ListControl

Events

SelectedIndexChanged

TextChanged

CompositeDataBoundControl

Abstract Class

 DataBoundControl

Properties

Controls

Figure 3-25 The base data-bound class hierarchy.

The DataBoundControl class has a method called DataBind. You call this method when

the data is ready to be read from the data source. When this method is called on a con

trol, this method is recursively called on all child controls. Calling the DataBind

method on the Web page recursively calls the DataBind method on all controls on the

Web page.

160

Chapter 3 Exploring Specialized Server Controls

Using DataSource Objects

The BaseDataBoundControl is the first control in the hierarchy, inheriting from Web-

Control. The class contains the DataSource and DataSourceID properties. The DataSource

property gets or sets the object that the data-bound control uses to retrieve a list of

data items. The DataSource object is typically an instance of a class that implements

IEnumerable, IListSource, IDataSource, or IHierarchicalDatasource. The DataSourceID

property gets or sets the ID of a control that contains the source of the data, such as

the SqlDataSource control. You typically set either the DataSource or the DataSourceID.

If both properties are set, the DataSourceID takes precedence. The data-bound control

automatically connects to the data source control at run time by calling the DataBind

method on this control, which also raises the DataBound method.

NOTE .NET 2.0

Graphical User Interface (GUI)-based data sources are new in ASP.NET version 2.0.

The GUI-based data sources are controls that inherit from DataSourceControl or

HierarchicalDataSourceControl and implement the IDataSource and IListSource inter

faces. These controls provide a consistent means to bind any data source to a data-

bound control. The class hierarchies for the DataSourceControl and Hierarchical-

DataSourceControl are shown in Figure 3-26.

The following is a description of each of the GUI-based data sources that you can use

to bind, or connect, to a data-bound control:

■ AccessDataSource Provides binding to a Microsoft Access database file that has

the .mdb extension.

■ SqlDataSource Provides binding to an Open Database Connectivity (ODBC),

Object Linking and Embedding Database (OLEDB), SQL Server, Oracle, or

other database that uses Structured Query Language (SQL). You can even attach

to a SQL Server database file by simply including it in your project.

■ XmlDataSource Provides binding to an XML file in your project folder. You can

specify a transform file that can be used to modify the XML file before it is bound

to a control. You can also provide an XPath expression to retrieve a subset of the

data in the XML file.

■ ObjectDataSource Provides binding to an object. The ObjectDataSource can

connect to a middle-tier business object or DataSet object in the Bin or

App_Code directory of your application. When using this option, you can select

Lesson 2: Working with Data-Bound Web Server Controls

161

a class that you have access to, and an instance of the class is created for you each

time that data is required. In addition to selecting a class, you must choose the

methods you want to execute to select, insert, update, and delete. The select

method should return a single object that implements IEnumerable, IListSource,

IDataSource, or IHierarchicalDatasource. This means that a DataTable object, a

DataSet object, or a collection object can be used. If the select method returns a

DataSet object, the first DataTable object in the DataSet is used.

■ SitemapDataSource You can connect to the site navigation tree for your applica

tion. This option requires a valid sitemap file at the application root.

Control

Class

IDataSource

IHierarchicalDataSource

HierarchicalDataSourceControl

Abstract Class

Control

IDataSource

DataSourceControl

Abstract Class

Control

IListSource

XmlDataSource

Class

IListSource ObjectDataSource
Class

DataSourceControl

SqlDataSource
Class

DataSourceControl

HierarchicalDataSourceControl

SiteMapDataSource

Class

IDataSource

IListSource

AccessDataSource

Class

SqlDataSource

HierarchicalDataSourceControl

Figure 3-26 The DataSourceControl and HierarchicalDataSourceControl class hierarchy.

Mapping Fields to Templates

Templated binding can be used on controls that support templates. A template con

trol is a control that has no default user interface. The control simply provides the

mechanism for binding to data. The developer supplies the user interface in the form

of inline templates. The template can contain declarative elements such as HTML and

Dynamic Hypertext Markup Language (DHTML). The template can also contain

162

Chapter 3 Exploring Specialized Server Controls

ASP.NET data-binding syntax to insert data from the data source. Controls that sup

port templates include GridView, DetailsView, and FormView. A typical control may

allow the following templates to be programmed:

■ HeaderTemplate This is an optional header, which is rendered at the top of the

control.

■ FooterTemplate This is an optional footer, which is rendered at the bottom of

the control.

■ ItemTemplate The item template is rendered for each row in the data source.

■ AlternatingItemTemplate This is an optional alternating item template; if imple

mented, every other row is rendered using this template.

■ SelectedItemTemplate This is an optional selected item template; if imple

mented, the template is used to render a row that has been selected.

■ SeparatorTemplate This is an optional separator template that defines the sepa

ration of each item and alternate item.

■ EditItemTemplate This is an optional edit item template that is used to render a

row that is in edit mode. This usually involves displaying the data in a TextBox

instead of a Label control.

Using the DataBinder Class

The DataBinder class provides a static method called Eval, which can simplify access

to data, especially when you are using templated controls. The Eval method uses

reflection to perform a lookup of the DataItem property’s underlying type by looking

at the type metadata that is stored in the type’s assembly. After the metadata is

retrieved, the Eval method determines how to connect to the given field. The end

result is that Eval provides a consistent method of binding to the data. The following

code shows the binding to the Vin property of the Car object:

<%# Eval("Vin") %>

The Eval method provides an overloaded method that allows a format string to be

assigned. The Price can be modified to provide currency formatting, as shown in the

following code:

<%# Eval("Vin", "{0:C}") %>

The problem with the Eval method is that it provides one-way, or read-only binding,

but the new Bind method fixes that problem.

NOTE .NET 2.0

Lesson 2: Working with Data-Bound Web Server Controls

163

The Bind method is new in ASP.NET version 2.0.

The Bind method provides two-way data binding, which makes this method desirable

for use when editing or inserting records. Just like the Eval method, the Bind method

has two overloads, which means that you can use it with or without the "format"

parameter. The following code shows the use of the Bind method to the Vin property

of the Car object:

<%# Bind("Vin") %>

The Bind method provides an overloaded method that allows a format string to be

assigned. The Price can be modified to provide currency formatting, as shown in the

following code:

<%# Bind("Vin", "{0:C}") %>

Notice that the syntax for the Bind method is the same as for the Eval method. Also,

the GridView, DetailsView, and FormView controls are the only controls that allow use

of the Bind method.

NOTE Be Sure to Set the ID

A control that is data-bound using the Bind syntax must have the ID property set to a user-defined

value.

Exploring the ListControl

The ListControl is an abstract base class that provides common functionality for its

inherited classes, as shown in Figure 3-27. The ListControl contains an Items collec

tion, which is a collection of ListItem objects. The ListItem contains a Text property that

is displayed to the user and a Value property that is posted back to the Web server. The

ListItem objects can be populated by adding new ListItems objects in code or by setting

the DataSource and DataMember properties. If you set the DataSource and DataMember

properties, you can choose the fields in your tabular result that you will bind to the

ListItem.Text and ListItem.Value properties by setting the DataTextField and DataValue-

Field properties, respectively. The text displayed for each item in the list control can be

formatted by setting the DataTextFormatString property.

164

Chapter 3 Exploring Specialized Server Controls

ListControl

Abstract Class

 DataBoundControl

Properties

AppendDataBoundItems

AutoPostBack

CausesValidation

DataTextField

DataTextFormatString

DataValueField

Items

SelectedIndex

SelectedItem

SelectedValue

TagKey

Text

ValidationGroup

Methods

ClearSelection

ListControl

Events

SelectedIndexChanged

TextChanged

BulletedList DropDownList

Class Class

 ListControl ListControl

CheckBoxList ListBox

Class Class

 ListControl ListControl

Figure 3-27 The ListControl class hierarchy.

RadioButtonList

Class

 ListControl

The SelectedIndex property lets you get or set the index of the selected item in the

ListControl. Using the SelectedItem property, you can access the selected ListItem

object’s properties. If you only need to access the value of the selected ListItem, use

the SelectedValue property. The ListControl also provides the SelectedIndexChanged

event, which is raised when the selection in the list control changes between posts

to the server.

NOTE .NET 2.0

AppendDataBoundItems is new in ASP.NET version 2.0.

Lesson 2: Working with Data-Bound Web Server Controls

165

The ListControl also contains a new property called AppendDataBoundItems that can

be set to true to keep all items that are currently in the ListControl in addition to

appending the items from the data binding. Setting this property to false clears the

Items property prior to binding the data.

The DropDownList Control

The DropDownList control is used to display a list of items to the user who can make

a single selection. The DropDownList control inherits from the ListControl control, as

shown in Figure 3-28.

ListControl

Abstract Class

 DataBoundControl

DropDownList

Class

 ListControl

Properties

BorderColor

BorderStyle

BorderWidth

SelectedIndex

Methods

DropDownList

Figure 3-28 The DropDownList control hierarchy.

The Items collection contains the collection of ListItem objects contained in the

DropDownList control. To determine the item that is selected, you can retrieve the

SelectedValue, SelectedItem, or SelectedIndex property.

Security Alert By default, populating the DropDownList control with data from an untrusted

source can create XSS vulnerabilities. Be sure to HtmlEncode untrusted data that is placed into

each ListItem.

The following example shows how to data-bind the DropDownList control to the Car

collection. The Web page contains a DropDownList control, a Button control, and a

Label control:

'VB

Imports System.Collections.Generic

166

Chapter 3 Exploring Specialized Server Controls

Partial Class DropDownList_Control

 Inherits System.Web.UI.Page

Private carList As List(Of Car) = Car.GetList()

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then

 DropDownList1.DataSource = carList

 DropDownList1.DataTextField = "Price"

 DropDownList1.DataValueField = "Price"

 DropDownList1.DataTextFormatString = "Price: {0:C}"

 DropDownList1.DataBind()

 End If

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 Label1.Text = DropDownList1.SelectedValue

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

//added

using System.Collections.Generic;

public partial class DropDownList_Control : System.Web.UI.Page

{

private List<Car> carList = Car.GetList();

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

{

 DropDownList1.DataSource = carList;

 DropDownList1.DataTextField = "Price";

 DropDownList1.DataValueField = "Price";

 DropDownList1.DataTextFormatString = "Price: {0:C}";

 DropDownList1.DataBind();

}

}

}

Lesson 2: Working with Data-Bound Web Server Controls

protected void Button1_Click(object sender, EventArgs e)

{

 Label1.Text = DropDownList1.SelectedValue;

}

167

In the example shown in Figure 3-29, the user makes a selection in the DropDownList

control, and the Button control is clicked to display the results in the Label control.

Note that the DropDownList control is being populated only on the first request for

the Web page. If the DropDownList control is repopulated, the selected item is dis

carded, resulting in no item being selected.

Figure 3-29 The DropDownList control with an item selected and copied to the Label control.

The ListBox Control

The ListBox control is used to display a list of items to the user, who can make a single

selection or multiple selections. The ListBox control inherits from the ListControl con

trol, as shown in Figure 3-30. The SelectionMode property is used to enable multiple-

item selection by setting this property to ListSelectionMode.Multiple.

The ListBox control has the Rows property, which is used to specify the height of the

ListBox control, based on specifying the quantity of data items to display.

The Items collection contains the collection of ListItem objects contained in the ListBox

control. To determine the items that are selected, you can enumerate the ListItem

objects in the Items collection by examining the Selected value for each ListItem element.

Security Alert By default, populating the ListBox control with data from an untrusted source

can create XSS vulnerabilities. Be sure to HtmlEncode untrusted data that will be placed into each

ListItem.

168

Chapter 3 Exploring Specialized Server Controls

ListControl

Abstract Class

 DataBoundControl

ListBox

Class

 ListControl

Properties

BorderColor

BorderStyle

BorderWidth

Rows

SelectionMode

Methods

GetSelectedIndices

ListBox

Figure 3-30 The ListBox control hierarchy.

The following example shows how to data-bind the ListBox control to the Car collec

tion. The Web page contains two ListBox controls with a Button control between them.

The ListBox controls have their SelectionMode properties set to Multiple.

'VB

Imports System.Collections.Generic

Partial Class ListBox_Control

 Inherits System.Web.UI.Page

Private carList As List(Of Car) = Car.GetList()

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 ListBox1.SelectionMode = ListSelectionMode.Multiple

 ListBox2.SelectionMode = ListSelectionMode.Multiple

 If Not IsPostBack Then

 ListBox1.DataSource = carList

 ListBox1.DataTextField = "Price"

 ListBox1.DataValueField = "Price"

 ListBox1.DataTextFormatString = "Price: {0:C}"

 ListBox1.DataBind()

 End If

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 For Each item As ListItem In ListBox1.Items

 If item.Selected Then

ListBox2.Items.Add(item)

 End If

 Next

 ListBox2.DataBind()

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

Lesson 2: Working with Data-Bound Web Server Controls

169

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

//added

using System.Collections.Generic;

public partial class ListBox_Control : System.Web.UI.Page

{

private List<Car> carList = Car.GetList();

protected void Page_Load(object sender, EventArgs e)

{

 ListBox1.SelectionMode = ListSelectionMode.Multiple;

 ListBox2.SelectionMode = ListSelectionMode.Multiple;

 if (!IsPostBack)

{

 ListBox1.DataSource = carList;

 ListBox1.DataTextField = "Price";

 ListBox1.DataValueField = "Price";

 ListBox1.DataTextFormatString = "Price: {0:C}";

 ListBox1.DataBind();

}

}

protected void Button1_Click(object sender, EventArgs e)

{

 foreach (ListItem item in ListBox1.Items)

{

 if (item.Selected)

{

ListBox2.Items.Add(item);

}

}

 ListBox2.DataBind();

}

}

170

Chapter 3 Exploring Specialized Server Controls

In the example shown in Figure 3-31, the user makes selections in the first ListBox

control and clicks the Button control to display the results in the second ListBox con

trol. Note that the first ListBox control is only being populated on the first request for

the Web page. If the ListBox control is repopulated, the selected items are discarded,

resulting in no items being selected.

Figure 3-31 The ListBox control with items selected and copied to the second control.

The CheckBoxList and RadioButtonList Controls

The CheckBoxList and RadioButtonList controls are very similar and are used to display

lists of items to the users, who can make single selections (RadioButtonList) or multi

ple selections (CheckBoxList). These controls inherit from the ListControl control, as

shown in Figure 3-32.

These controls contain a RepeatColumns property that is used to size the control hor

izontally. In addition, the RepeatDirection can be set to Vertical or Horizontal to indi

cate which way the data is rendered.

The Items collection contains the collection of ListItem objects, which are inside the

CheckBoxList and the RadioButtonList controls. Use the SelectedValue property to deter

mine the item that has been selected for the RadioButtonList. To find the selected

CheckBoxList items, you can enumerate the ListItem objects in the Items collection by

examining the value of the Selected property for each ListItem element.

CheckBoxList

Class

 ListControl

Properties

CellPadding

CellSpacing

HasFooter

HasHeader

HasSeparators

RepeatColumns

RepeatDirection

RepeatedItemCount

RepeatLayout

TextAlign

Methods

New

Lesson 2: Working with Data-Bound Web Server Controls

ListControl
MustInherit Class

 DataBoundControl

RadioButtonList

Class

 ListControl

Properties

CellPadding

CellSpacing

HasFooter

HasHeader

HasSeparators

RepeatColumns

RepeatDirection

RepeatedItemCount

RepeatLayout

TextAlign

Methods

New

171

Figure 3-32 The CheckBoxList and RadioButtonList control hierarchy.

Security Alert By default, populating the CheckBoxList and RadioButtonList controls with data

from an untrusted source can create XSS vulnerabilities. Be sure to HtmlEncode untrusted data that

will be placed into each ListItem.

The following example shows how to data-bind the CheckBoxList and RadioButtonList

controls to the Car collection. The Web page contains one of each of the controls,

plus a ListBox control. All of these controls have been bound to the Car collection.

The ListBox shows the order of the Car collection. The CheckBoxList has the Repeat-

Columns set to 3 and the RepeatDirection set to Horizontal. The RadioButtonList also

has the RepeatColumns set to 3, but the RepeatDirection property is set to Vertical.

'VB

Imports System.Collections.Generic

Partial Class CheckBoxList_and_RadioButtonList_Controls

 Inherits System.Web.UI.Page

Private carList As List(Of Car) = Car.GetList()

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

172

Chapter 3 Exploring Specialized Server Controls

 RadioButtonList1.RepeatColumns = 3

 RadioButtonList1.RepeatDirection = RepeatDirection.Vertical

 CheckBoxList1.RepeatColumns = 3

 CheckBoxList1.RepeatDirection = RepeatDirection.Horizontal

 If Not IsPostBack Then

 If Not IsPostBack Then

ListBox1.DataSource = carList

ListBox1.DataTextField = "Make"

ListBox1.DataValueField = "Price"

RadioButtonList1.DataSource = carList

RadioButtonList1.DataTextField = "Make"

RadioButtonList1.DataValueField = "Price"

CheckBoxList1.DataSource = carList

CheckBoxList1.DataTextField = "Make"

CheckBoxList1.DataValueField = "Price"

DataBind()

 End If

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

//added

using System.Collections.Generic;

public partial class CheckBoxList_and_RadioButtonList_Controls : System.Web.UI.Page

{

private List<Car> carList = Car.GetList();

protected void Page_Load(object sender, EventArgs e)

{

 RadioButtonList1.RepeatColumns = 3;

 RadioButtonList1.RepeatDirection = RepeatDirection.Vertical;

 CheckBoxList1.RepeatColumns = 3;

 CheckBoxList1.RepeatDirection = RepeatDirection.Horizontal;

 if (!IsPostBack)

{

 ListBox1.DataSource = carList;

 ListBox1.DataTextField = "Make";

 ListBox1.DataValueField = "Price";

 RadioButtonList1.DataSource = carList;

}

}

}

Lesson 2: Working with Data-Bound Web Server Controls

 RadioButtonList1.DataTextField = "Make";

 RadioButtonList1.DataValueField = "Price";

 CheckBoxList1.DataSource = carList;

 CheckBoxList1.DataTextField = "Make";

 CheckBoxList1.DataValueField = "Price";

 DataBind();

173

In the example shown in Figure 3-33, the user makes selections in the first ListBox

control and the Button control is clicked to display the results in the second ListBox

control. Note that the first ListBox control is only populated on the first request for the

Web page. If the ListBox control is repopulated, the selected items are discarded,

resulting in no items being selected.

Figure 3-33 The CheckBoxList and RadioButtonList controls, showing the use of the Repeat-

Columns and RepeatDirection.

The BulletedList Control

The BulletedList control displays an unordered or ordered list of items that renders

as HTML ul or ol elements, respectively. The BulletedList control inherits from the

ListControl control, as shown in Figure 3-34. This control renders as either bullets

or numbers based on the BulletStyle property.

If the control is set to render as bullets, you can select the bullet style of Disc, Circle, or

Square. Note that the BulletStyle settings are not compatible with all browsers. A cus

tom image can be displayed instead of the bullet.

If the BulletList control is set to render numbers, you can set the BulletStyle to Lower-

Alpha, UpperAlpha, LowerRoman, and UpperAlpha fields. You can also set the FirstBullet-

Number property to specify the starting number for the sequence.

174

Chapter 3 Exploring Specialized Server Controls

ListControl
Abstract Class

 DataBoundControl

BulletedList

Class

 ListControl

Properties

AutoPostBack

BulletImageUrl

BulletStyle

Controls

DisplayMode

FirstBulletNumber

SelectedIndex

SelectedItem

SelectedValue

TagKey

Target

Text

Methods

BulletedList

Events

Click

Figure 3-34 The BulletedList control hierarchy.

The DisplayMode property can be set to Text, LinkButton, or HyperLink. If set to Link-

Button or HyperLink, the control performs a PostBack when a user clicks an item to

raise the Click event.

Security Alert By default, populating the BulletedList control with data from an untrusted source

can create XSS vulnerabilities. Be sure to HtmlEncode untrusted data that is placed into each List-

Item.

The following example shows how to data-bind the BulletedList control to the Car col

lection. The Web page contains a BulletedList control and two ListBox controls. The

first ListBox control contains the list of BulletStyle options and the second ListBox con

tains the DisplayMode settings. These ListBox controls demonstrate the formatting

options that are available.

'VB

Imports System.Collections.Generic

Partial Class BulletedList_Control

Lesson 2: Working with Data-Bound Web Server Controls

 Inherits System.Web.UI.Page

Private carList As List(Of Car) = Car.GetList()

Protected Sub ListBox1_SelectedIndexChanged(ByVal sender As Object, ByVal e As

System.EventArgs) Handles ListBox1.SelectedIndexChanged

 BulletedList1.BulletStyle = _

 CType([Enum].Parse(_

 GetType(BulletStyle), _

 ListBox1.SelectedValue), BulletStyle)

End Sub

Protected Sub ListBox2_SelectedIndexChanged(ByVal sender As Object, ByVal e As

System.EventArgs) Handles ListBox2.SelectedIndexChanged

 BulletedList1.DisplayMode = _

 CType([Enum].Parse(_

 GetType(BulletedListDisplayMode), _

 ListBox2.SelectedValue), BulletedListDisplayMode)

End Sub

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 ListBox1.AutoPostBack = True

 ListBox2.AutoPostBack = True

 If (Not IsPostBack) Then

 BulletedList1.DataSource = carList

 BulletedList1.DataTextField = "Make"

 BulletedList1.DataValueField = "Price"

 ListBox1.DataSource = _

[Enum].GetNames(GetType(BulletStyle))

 ListBox2.DataSource = _

[Enum].GetNames(GetType(BulletedListDisplayMode))

 DataBind()

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

//added

using System.Collections.Generic;

175

176

Chapter 3 Exploring Specialized Server Controls

public partial class BulletedList_Control : System.Web.UI.Page

{

private List<Car> carList = Car.GetList();

 protected void Page_Load(object sender, EventArgs e)

{

 ListBox1.AutoPostBack = true;

 ListBox2.AutoPostBack = true;

 if (!IsPostBack)

{

 BulletedList1.DataSource = carList;

 BulletedList1.DataTextField = "Make";

 BulletedList1.DataValueField = "Price";

 ListBox1.DataSource =

 Enum.GetNames(typeof(BulletStyle));

 ListBox2.DataSource =

 Enum.GetNames(typeof(BulletedListDisplayMode));

 DataBind();

}

}

protected void ListBox1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 BulletedList1.BulletStyle =

 (BulletStyle)Enum.Parse(

 typeof(BulletStyle),

 ListBox1.SelectedValue);

}

protected void ListBox2_SelectedIndexChanged(object sender,

 EventArgs e)

{

 BulletedList1.DisplayMode =

 (BulletedListDisplayMode)Enum.Parse(

 typeof(BulletedListDisplayMode),

 ListBox2.SelectedValue);

}

}

In the example shown in Figure 3-35, you can select a BulletStyle and a DisplayMode to

see the rendered output. Keep in mind that the BulletStyle settings are not compatible

with all browsers.

Lesson 2: Working with Data-Bound Web Server Controls

Figure 3-35 The BulletedList control has different setting options available.

The AdRotator Control

177

The AdRotator control is used to display randomly selected advertisement banners on

a Web page. In Source view, the AdRotator control is created as an <asp:AdRotator>

element. This control generates <a> and elements when rendering to HTML.

The AdRotator control inherits directly from the DataBoundControl class, as shown

in Figure 3-36.

WebControl

Class

 Control

BaseDataBoundControl

Abstract Class

 WebControl

DataBoundControl

Abstract Class

 BaseDataBoundControl

AdRotator

Class

 DataBoundControl

Properties

AdvertisementFile

AlternateTextField

Font

ImageUrlField

KeywordFilter

NavigateUrlField

TagKey

Target

UniqueID

Methods

AdRotator

OnAdCreated

OnInit

OnPreRender

PerformDataBinding

PerformSelect

Render

Events

AdCreated

Figure 3-36 The AdRotator control hierarchy.

178

Chapter 3 Exploring Specialized Server Controls

The advertisement information can be retrieved from an XML file or from a data

base. Table 3-5 describes the elements that can be placed in the XML file for each

advertisement.

Table 3-5 Ad Elements

Element Name Description

Keyword The category key of the ad. This can be used to filter for spe

cific ads.

ImageUrl The URL of the advertisement image to display.

NavigateUrl The URL to navigate to when the ad is clicked.

AlternateText The text to display if the image is unavailable; is displayed

as a ToolTip.

Impressions A number that is used to weight the frequency of this ad

being displayed. The sum of all of the impressions values

must be less than 2,048,000,000.

Height This is an optional value that specifies the pixel height of

the ad. This value overrides the AdRotator Height property.

Width This is an optional value that specifies the pixel width of

the ad. This value overrides the AdRotator Width property.

You must be careful with the configuration, naming, and location of the advertise

ment file to assure that you don’t cause security vulnerabilities. Listed below are some

guidelines for this file:

1. Locate the advertisement file in the App_Data folder because ASP.NET does not

allow browsers to request files in this folder.

2. Use a file extension, such as .config, that ASP.NET does not allow a browser to

request.

3. Set permissions on the advertisement file to allow the ASP.NET account to have

read-only access.

4. The ad file is not validated by the AdRotator control, so always check the data to

assure that it does not contain malicious scripts before the data is released to

production.

Lesson 2: Working with Data-Bound Web Server Controls

179

The Impressions element controls the frequency of advertisement display. A higher

number increases the frequency relative to other advertisements in the file.

In this example, a Web page was created and an AdRotator control was added to the

page. The advertisement file contains ad entries for Adventure Works, Contoso, and

Northwind Traders. Listed below is the XML file, which was placed into the

App_Data folder.

Sample Ads.config XML File
<?xml version="1.0" encoding="utf-8" ?>

<Advertisements

 xmlns="http://schemas.microsoft.com/AspNet/AdRotator-Advertisement-File-1.2">

<Ad xmlns="">

 <Keyword>AdventureWorks</Keyword>

 <ImageUrl>~/images/AdventureWorks.gif</ImageUrl>

 <NavigateUrl>http://www.adventure-works.com</NavigateUrl>

 <AlternateText>Ad for Adventure Works Web site</AlternateText>

 <Impressions>100</Impressions>

</Ad>

<Ad xmlns="">

 <Keyword>Contoso</Keyword>

 <ImageUrl>~/images/Contoso.gif</ImageUrl>

 <NavigateUrl>http://www.contoso.com/</NavigateUrl>

 <AlternateText>Ad for Contoso Ltd. Web site</AlternateText>

 <Impressions>100</Impressions>

</Ad>

<Ad xmlns="">

 <Keyword>Northwind</Keyword>

 <ImageUrl>~/images/NorthwindTraders.gif</ImageUrl>

 <NavigateUrl>http://http://www.northwindtraders.com</NavigateUrl>

 <AlternateText>Ad for Northwind Traders Web site</AlternateText>

 <Impressions>50</Impressions>

</Ad>

</Advertisements>

Next, full banner images (468 pixels wide by 60 pixels high) were added to the

Images folder for Adventure Works, Contoso, and Northwind Traders, and the follow

ing code was added to the code-behind page to configure that AdRotator control:

'VB

Partial Class AdRotator_Control

 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 AdRotator1.AdvertisementFile = "~/App_Data/Ads.config"

 AdRotator1.Height = 60

180

Chapter 3 Exploring Specialized Server Controls

 AdRotator1.Width = 468

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class AdRotator_Control : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 AdRotator1.AdvertisementFile = "~/App_Data/Ads.config";

 AdRotator1.Height = 60;

 AdRotator1.Width = 468;

}

}

When this Web page is displayed, one of the advertisements is displayed, as shown in

Figure 3-37.

Figure 3-37 The rendered AdRotator displays an advertisement.

The CompositeDataBoundControl Control

The CompositeDataBoundControl control serves as a base class for controls that con

tain other data-bound controls. The most significant aspect of this class is that it

implements the INamingContainer interface, which means that an inheritor of this

Lesson 2: Working with Data-Bound Web Server Controls

class is a naming container for its child controls.

181

The classes that inherit from CompositeDataBoundControl are FormsView, DetailsView,

and GridView, as shown in Figure 3-38. These controls are introduced in this lesson

and will be further discussed as they are used with ADO.NET in Chapter 4, ―Using

ADO.NET and XML with ASP.NET.‖

CompositeDataBoundControl

MustInherit Class

DetailsView

Class

 CompositeDataBoundControl

 DataBoundControl

Properties

Controls

INamingContainer

GridView
Class

 CompositeDataBoundControl

FormView

Class

 CompositeDataBoundControl

Figure 3-38 The CompositeDataBoundControl class hierarchy.

The GridView Control

The GridView control is used to display data in a tabular, rows-and-columns format.

The GridView renders in the browser as an HTML table. The GridView control makes

it easy to configure features such as paging, sorting, and editing without having to

write much, if any, code. The GridView class hierarchy is shown in Figure 3-39.

NOTE .NET 2.0

The GridView is new in ASP.NET version 2.0.

http://ASP.NET.

182

Chapter 3 Exploring Specialized Server Controls

WebControl

Class

 Control IPostBackContainer
IPostBackEventHandler
ICallbackContainer
ICallbackEventHandler

BaseDataBoundControl

Abstract Class

 WebControl

DataBoundControl

Abstract Class

 BaseDataBoundControl

CompositeDataBoundControl

Abstract Class

 DataBoundControl

DataControlField
Abstract Class

IStateManager
IDataSourceViewSchemaAccessor

Properties
AccessibleHeaderText
Control
ControlStyle
DesignMode
FooterStyle
FooterText
HeaderImageUrl
HeaderStyle
HeaderText
InsertVisible
IsTrackingViewState
ItemStyle

GridView

Class
CompositeDataBoundControl

Properties

AllowPaging
AllowSorting
AlternatingRowStyle
AutoGenerateColumns
AutoGenerateDeleteButton
AutoGenerateEditButton
AutoGenerateSelectButton
BackImageUrl
BottomPagerRow
Caption
CaptionAlign
CellPadding
CellSpacing
DataKeyNames
DataKeys
EditIndex
EditRowStyle
EmptyDataRowStyle
EmptyDataTemplate
EmptyDataText
EnableSortingAndPagingCallbacks
FooterRow
FooterStyle
GridLines
HeaderRow
HeaderStyle
HorizontalAlign
PageCount
PageIndex
PagerSettings
PagerStyle
PagerTemplate
PageSize
RowHeaderColumn
RowStyle
SelectedDataKey
SelectedIndex
SelectedRow
SelectedRowStyle
SelectedValue
ShowFooter
ShowHeader
SortDirection

ShowHeader
SortExpression
ViewState
Visible

Methods
ExtractValuesFromCell
Initialize
InitializeCell
ToString
ValidateSupportsCallback

GridViewRow

Class
 TableRow

Properties

DataItem
DataItemIndex
RowIndex
RowState
RowType

Methods

GridViewRow

Columns

IDataItemContainer
INamingContainer

Rows

SortExpression
TagKey
TopPagerRow
UseAccessibleHeader

Methods
DataBind
DeleteRow
GridView
IsBindableType
Sort
UpdateRow

Events

PageIndexChanged
PageIndexChanging
RowCancelingEdit
RowCommand
RowCreated
RowDataBound
RowDeleted
RowDeleting
RowEditing
RowUpdated
RowUpdating
SelectedIndexChanged
SelectedIndexChanging
Sorted
Sorting

Figure 3-39 The GridView class hierarchy.

Lesson 2: Working with Data-Bound Web Server Controls

183

The basic structure of the GridView is shown in Figure 3-40. The GridView control con

sists of a collection of GridViewRow (row) objects and a collection of DataControlField

(column) objects. The GridViewRow object inherits from the TableRow object, which

contains the Cells property, which is a collection of DataControlFieldCell objects.

GridView Structure

Row = GridViewRow

Column = DataControlField

Cell = DataControlFieldCell

Column

Columns

Column Column

Rows

Row Cells

Row Cells

Row Cells

Row Cells

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Figure 3-40 The basic GridView control structure.

Although the GridViewRow object holds the collection of cells, each DataControl-

Field (column) object provides the behavior to initialize cells of a specific type in the

DataControlField object’s InitializeCell method. The column classes that inherit from

DataControlField override the InitializeCell method. The GridView control has an

InitializeRow method that is responsible for creating a new GridViewRow and the

row’s cells by making calls to the overridden InitializeCell method when the row is

being created.

The DataControlField class hierarchy is shown in Figure 3-41. The derived classes are

used to create a DataControlFieldCell with the proper contents. Remember that you

don’t define cell types for your GridView control; you define column types and your

column object supplies a cell object to the row using the InitializeCell method.

The DataControlField class hierarchy shows the different column types that are avail

able in a GridView control.

184

Chapter 3 Exploring Specialized Server Controls

DataControlField

Abstract Class

ButtonFieldBase BoundField

Abstract Class Class

DataControlField DataControlField

ButtonField AutoGeneratedField
Class Sealed Class

ButtonFieldBase BoundField

CommandField CheckBoxField

Class Class

ButtonFieldBase BoundField

Figure 3-41 The DataControlField class hierarchy.

IStateManager

IDataSourceViewSchemaAccessor

TemplateField

Class

DataControlField

HyperLinkField
Class

DataControlField

ImageField

Class

DataControlField

Using Styles to Format the GridView Control

You use styles to format the GridView. Figure 3-42 shows the style hierarchy. The Row-

Created and RowDataBound events can be used to control the style programmatically.

In either of these event handlers, the Cells collection on the newly created row can be

used to apply a style to a single cell in the row. The difference between the two events

is that the RowCreated event takes place first, but the data is not available at this time.

You can use the RowDataBound event when you need to apply a different style to a cell

based on the data in the cell. These events fire after the styles are applied, which

means you can override any existing styles. Applying a different style to a cell based on

the data in the cell allows you to apply business rules to determine whether a cell

should stand out from other cells (such as making negative ―quantity on hand‖ num

bers red, but only when an item is shipped more than once per month).

Style Hierarchy

GridView Style

backcolor=red; font=arial

HeaderStyle

font-italic=true

FooterStyle

font-bold=true

RowStyle

backcolor=green

Lesson 2: Working with Data-Bound Web Server Controls

Effective Style

backcolor=red; font=arial

backcolor=red; font=arial;

font-italic=true

backcolor=red; font=arial;

font-bold=true

backcolor=green; font=arial

backcolor=green; font=arial;

font-italic=true

185

AlternatingRowStyle
font-italic=true

SelectedRowStyle

backcolor=gold

EditRowStyle

font=system

ColumnStyle

backcolor=cyan

Figure 3-42 The GridView style hierarchy.

Item: backcolor=gold; font=arial;

font-italic=false

Alternate: backcolor=gold;

font=arial; font-italic=true

Item: backcolor=gold; font=system;

font-italic=false

Alternate: backcolor=gold;

font=system; font-italic=true

Item: backcolor=cyan;

font=system; font-italic=false

Alternate: backcolor=cyan;

font=system; font-italic=true

The following is an example of using the GridView with an ObjectDataSource to browse

and edit data. This example uses a newly created class called CarList to connect to the

ObjectDataSource control. The CarList class file is added and the code is as follows:

'VB

Imports Microsoft.VisualBasic

Imports System.Collections.Generic

Public Class CarList

Private Shared carList As List(Of Car)

Public Shared Sub Initialize()

 carList = Car.GetList()

End Sub

186

Chapter 3 Exploring Specialized Server Controls

Public Function [Select]() As List(Of Car)

 Return carList

End Function

Public Sub Update(ByVal updateCar As Car)

 current = updateCar

 Dim carFound As Car = carList.Find(AddressOf MatchId)

 carFound.Make = updateCar.Make

 carFound.Model = updateCar.Model

 carFound.Year = updateCar.Year

 carFound.Price = updateCar.Price

End Sub

Private current As Car

Private Function MatchId(ByVal _car As Car) As Boolean

 Return IIf(current.Vin = _car.Vin, True, False)

End Function

Public Sub Insert(ByVal _car As Car)

 carList.Add(_car)

End Sub

Public Sub Delete(ByVal deleteCar As Car)

 current = deleteCar

 Dim carFound As Car = carList.Find(AddressOf MatchId)

 carList.Remove(carFound)

End Sub

Public Function Count() As Integer

 Return carList.Count

End Function

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

//added

using System.Collections.Generic;

/// <summary>

/// Summary description for EmployeeList

/// </summary>

public class CarList

{

private static List<Car> carList;

Lesson 2: Working with Data-Bound Web Server Controls

public static void Initialize()

{

 carList = Car.GetList();

}

public List<Car> Select()

{

 return carList;

}

public void Update(Car updateCar)

{

 Car carFound = carList.Find(

 delegate(Car car) { return car.Vin == updateCar.Vin; });

 carFound.Make = updateCar.Make;

 carFound.Model = updateCar.Model;

 carFound.Year = updateCar.Year;

 carFound.Price = updateCar.Price;

}

public void Insert(Car car)

{

 carList.Add(car);

}

public void Delete(Car deleteCar)

{

 Car carFound = carList.Find(

 delegate(Car car) { return car.Vin == deleteCar.Vin; });

 carList.Remove(carFound);

}

public int Count()

{

 return carList.Count;

}

}

187

A GridView control, ObjectDataSource, and Button are added to a Web page. The Object-

DataSource is configured to use the CarList as its data source. The GridView control is

configured to use the ObjectDataSource as its data source. The Button is used to popu

late the CarList with sample data because the GridView control does not natively sup

port the ability to add to the data source. The following is the declarative markup for

the Web page form element that works with VB.NET and C#:

ASPX Declarative Markup
<form id="form1" runat="server">

<div>

 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

 DataObjectTypeName="Car" TypeName="CarList"

188

Chapter 3 Exploring Specialized Server Controls

 SelectMethod="Select" UpdateMethod="Update"

 DeleteMethod="Delete" InsertMethod="Insert">

 <InsertParameters>

<asp:Parameter Name="vin" Type="String" />

<asp:Parameter Name="make" Type="String" />

<asp:Parameter Name="model" Type="String" />

<asp:Parameter Name="year" Type="Int32" />

<asp:Parameter Name="price" Type="Decimal" />

 </InsertParameters>

 </asp:ObjectDataSource>

 <asp:GridView ID="GridView1" runat="server"

 Style="z-index: 100; left: 20px; position: absolute; top: 75px"

 AllowPaging="True" AutoGenerateColumns="False"

 DataSourceID="ObjectDataSource1" Width="135px" CellPadding="4"

 DataKeyNames="Vin" ForeColor="#333333" GridLines="None">

 <Columns>

<asp:CommandField ShowDeleteButton="True"

 ShowEditButton="True" ShowSelectButton="True" />

<asp:BoundField DataField="Vin" HeaderText="Vin"

 SortExpression="Vin" ReadOnly="True" />

<asp:BoundField DataField="Make" HeaderText="Make"

 SortExpression="Make" />

<asp:BoundField DataField="Model" HeaderText="Model"

 SortExpression="Model" />

<asp:BoundField DataField="Year" HeaderText="Year"

 SortExpression="Year" />

<asp:BoundField DataField="Price" DataFormatString="{0:C}"

 HeaderText="Price" HtmlEncode="False"

 SortExpression="Price">

 <ItemStyle HorizontalAlign="Right" />

</asp:BoundField>

 </Columns>

 <FooterStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" />

 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />

 <EditRowStyle BackColor="#999999" />

 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"

ForeColor="#333333" />

 <PagerStyle BackColor="#284775" ForeColor="White"

HorizontalAlign="Center" />

 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" />

 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />

 </asp:GridView>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"

 Style="z-index: 102; left: 20px; position: absolute; top: 45px"

 Text="Load Cars" />

</div>

</form>

Lesson 2: Working with Data-Bound Web Server Controls

189

In the declarative markup, the ObjectDataSource is configured to use the CarList class,

which is a collection of Car objects. The GridView is configured to allow editing, delet

ing, and selecting Car rows. The Vin property is configured to display as read-only,

and the Price property is configured to be right-aligned and display as currency.

The code-behind page only contains code to populate the car list when the Button con

trol is clicked, as follows:

'VB

Partial Class GridView_Control

 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 CarList.Initialize()

 GridView1.DataBind()

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class GridView_Control : System.Web.UI.Page

{

protected void Button1_Click(object sender, EventArgs e)

{

 CarList.Initialize();

 GridView1.DataBind();

}

}

When this Web page is executed and displayed, the Web page displays only the Button

control. Click the Button to populate the CarList collection and display the contents in

the GridView. Click the Edit link on one of the rows to place the row into edit mode, as

shown in Figure 3-43.

190

Chapter 3 Exploring Specialized Server Controls

Figure 3-43 The GridView control in edit mode is populated from an ObjectDataSource and CarList

object.

The DetailsView Control

The DetailsView control is used to display the values of a single record from a data

source in an HTML table, where each table row represents a field of the record. The

DetailsView control allows you to edit, delete, and insert records. If the AllowPaging

property is set to true, the DetailsView can be used by itself to navigate the data source,

but the DetailsView can also be used in combination with other controls, such as the

GridView, ListBox, or DropDownList, for scenarios in which you want to display a mas

ter detail. The DetailsView class hierarchy is shown in Figure 3-44.

NOTE .NET 2.0

The DetailsView is new in ASP.NET version 2.0.

The DetailsView does not support sorting, whereas the GridView does. The GridView

does not support inserting new records, whereas the DetailsView does.

The DetailsView supports the same formatting options that are available with the Grid-

View control. You can format the DetailsView control using the HeaderStyle, RowStyle,

AlternatingRowStyle, CommandRowStyle, FooterStyle, PagerStyle, and EmptyDataRowStyle

properties.

The following is an example of using the DetailsView to display the CarList collection

that was defined in the previous GridView example. This example is very much like

the GridView example, but the DetailsView control is used instead, so you can easily

see the differences between the controls.

WebControl

Class

Lesson 2: Working with Data-Bound Web Server Controls

DetailsView

Class

191

 Control

BaseDataBoundControl

Abstract Class

 WebControl

DataBoundControl

Abstract Class

 BaseDataBoundControl

CompositeDataBoundControl

Abstract Class

 DataBoundControl

DetailsViewRow
Class

 TableRow

Properties

RowIndex
RowState
RowType

Methods

DetailsViewRow

OnBubbleEvent

IDataItemContainer
INamingContainer
ICallbackContainer
ICallbackEventHandler
IPostBackEventHandler
IPostBackContainer

Rows

CompositeDataBoundControl

Properties

AllowPaging
AlternatingRowStyle
AutoGenerateDeleteButton
AutoGenerateEditButton
AutoGenerateInsertButton
AutoGenerateRows
BackImageUrl
BottomPagerRow
Caption
CaptionAlign
CellPadding
CellSpacing
CommandRowStyle
CurrentMode
DataItem
DataItemCount
DataItemIndex
DataKey
DataKeyNames
DefaultMode
EditRowStyle
EmptyDataRowStyle
EmptyDataTemplate
EmptyDataText
EnablePagingCallbacks
FieldHeaderStyle
Fields
FooterRow
FooterStyle
FooterTemplate
FooterText
GridLines
HeaderRow
HeaderStyle
HeaderTemplate
HeaderText
HorizontalAlign
InsertRowStyle
PageCount
PageIndex
PagerSettings
PagerStyle
PagerTemplate
Rows
RowStyle
SelectedValue
ShowFooter
TagKey
TopPagerRow

Methods

ChangeMode
DataBind
DeleteItem
DetailsView
InsertItem
IsBindableType
UpdateItem

Events

ItemCommand
ItemCreated
ItemDeleted
ItemDeleting
ItemInserted
ItemInserting
ItemUpdated
ItemUpdating
ModeChanged
ModeChanging
PageIndexChanged
PageIndexChanging

Figure 3-44 The DetailsView class hierarchy.

192

Chapter 3 Exploring Specialized Server Controls

The code for the CarList class must be added as shown in the previous GridView exam

ple. A DetailsView, ObjectDataSource, and Button control are added to the Web page

and configured. The following is the Web page markup, showing everything inside

the form element:

ASPX Declarative Markup
<form id="form1" runat="server">

<div>

 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

 DataObjectTypeName="Car" TypeName="CarList"

 SelectMethod="Select" UpdateMethod="Update"

 DeleteMethod="Delete" InsertMethod="Insert">

 </asp:ObjectDataSource>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"

 Style="z-index: 101; left: 20px; position: absolute; top: 45px"

 Text="Load Cars" />

 <asp:DetailsView ID="DetailsView1" runat="server"

 AllowPaging="True" CellPadding="4"

 DataSourceID="ObjectDataSource1" ForeColor="#333333"

 GridLines="None" Height="50px"

 Style="z-index: 103; left: 20px;

position: absolute; top: 85px" Width="305px"

 AutoGenerateRows="False" DataKeyNames="Vin">

 <FooterStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" />

 <CommandRowStyle BackColor="#E2DED6" Font-Bold="True" />

 <EditRowStyle BackColor="#999999" />

 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />

 <PagerStyle BackColor="#284775" ForeColor="White"

HorizontalAlign="Center" />

 <Fields>

<asp:BoundField DataField="Vin" HeaderText="Vin"

 SortExpression="Vin" ReadOnly="True" />

<asp:BoundField DataField="Make" HeaderText="Make"

 SortExpression="Make" />

<asp:BoundField DataField="Model" HeaderText="Model"

 SortExpression="Model" />

<asp:BoundField DataField="Year" HeaderText="Year"

 SortExpression="Year" />

<asp:BoundField DataField="Price" HeaderText="Price"

 SortExpression="Price" DataFormatString="{0:C}"

 HtmlEncode="False" >

 <ItemStyle HorizontalAlign="Right" />

</asp:BoundField>

<asp:CommandField ShowDeleteButton="True"

 ShowEditButton="True" ShowInsertButton="True" />

 </Fields>

 <FieldHeaderStyle BackColor="#E9ECF1" Font-Bold="True" />

 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" />

 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />

 </asp:DetailsView>

</div>

</form>

Lesson 2: Working with Data-Bound Web Server Controls

193

In the declarative markup, the ObjectDataSource is configured to use the CarList class,

which is a collection of Car objects. The DetailsView is configured to allow editing,

deleting, and inserting Car rows. The Vin property is configured to display as read-

only, and the Price property is configured to be right-aligned and displayed as cur

rency.

The code-behind page only contains code to populate the car list when the Button con

trol is clicked, as follows:

'VB

Partial Class DetailsView_Control

 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 CarList.Initialize()

 DetailsView1.DataBind()

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class DetailsView_Control : System.Web.UI.Page

{

protected void Button1_Click(object sender, EventArgs e)

{

 CarList.Initialize();

 DetailsView1.DataBind();

}

}

When this Web page is executed and displayed, the Web page displays only the Button

control unless you have already populated the CarList. Click the Button to populate the

CarList collection and display the contents in the DetailsView. Click the New link on the

194

Chapter 3 Exploring Specialized Server Controls

bottom of the control to add a new row and place the row into edit mode, as shown in

Figure 3-45.

Figure 3-45 The DetailsView control in edit mode after clicking the New link is populated from an

ObjectDataSource and CarList object.

The FormView Control

Like the DetailsView, the FormView control is used to display a single record from a

data source, except that it displays user-defined templates instead of row fields. Dif

ferent user-defined templates can be assigned for viewing, editing, and updating

records. Creating your own templates gives you the greatest flexibility in controlling

how the data is displayed. Figure 3-46 shows the FormView class hierarchy.

NOTE .NET 2.0

The FormView is new in ASP.NET version 2.0.

Although the FormView control gives you the greatest flexibility when choosing

whether to use the GridView, DetailsView, or FormView, you have the most work to do

when setting up the FormView, so you should take a close look at the GridView and

DetailsView before choosing this control.

The following is an example of using the FormView control to display the CarList col

lection that was defined in the previous GridView example. This example is very much

like the DetailsView example, but the FormView control is used instead, which allows

you to compare the GridView, DetailsView, and FormView controls.

WebControl

Class

Lesson 2: Working with Data-Bound Web Server Controls

FormView

Class

195

 Control

BaseDataBoundControl

Abstract Class

 WebControl

DataBoundControl

Abstract Class

 BaseDataBoundControl

CompositeDataBoundControl

Abstract Class

 DataBoundControl

IDataItemContainer
INamingContainer
IPostBackEventHandler
IPostBackContainer

CompositeDataBoundControl

Properties

AllowPaging

BackImageUrl

BottomPagerRow

Caption

CaptionAlign
CellPadding

CellSpacing
CurrentMode

DataItem

DataItemCount
DataItemIndex

DataKey

DataKeyNames

DefaultMode

EditItemTemplate

EditRowStyle

EmptyDataRowStyle

EmptyDataTemplate

EmptyDataText

FooterRow
FooterStyle

FooterTemplate

FooterText

GridLines
HeaderRow
HeaderStyle
HeaderTemplate

HeaderText

HorizontalAlign

InsertItemTemplate

InsertRowStyle

ItemTemplate

PageCount

PageIndex

PagerSettings
PagerStyle

PagerTemplate

Row
RowStyle

SelectedValue
TagKey

TopPagerRow

Methods

ChangeMode
DataBind
DeleteItem
FormView

InsertItem
IsBindableType
UpdateItem

Events

ItemCommand

ItemCreated
ItemDeleted
ItemDeleting

ItemInserted
ItemInserting

ItemUpdated
ItemUpdating
ModeChanged
ModeChanging
PageIndexChanged
PageIndexChanging

Figure 3-46 The FormView class hierarchy.

196

Chapter 3 Exploring Specialized Server Controls

The code for the CarList class must be added as shown in the prior GridView example.

A FormView, ObjectDataSource, and Button control are added to the Web page and con

figured. The following is the Web page markup, showing everything inside the form

element:

ASPX Declarative Markup
<form id="form1" runat="server">

<div>

 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

 DataObjectTypeName="Car" TypeName="CarList"

 SelectMethod="Select" UpdateMethod="Update"

 DeleteMethod="Delete" InsertMethod="Insert">

 </asp:ObjectDataSource>

 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click"

 Style="z-index: 101; left: 20px; position: absolute; top: 45px"

 Text="Load Cars" />

</div>

<asp:FormView ID="FormView1" runat="server" AllowPaging="True"

 DataKeyNames="Vin" DataSourceID="ObjectDataSource1"

 Width="100%">

 <ItemTemplate>

<table>

<tr ><td align="center"><hr />

 VIN:

 <asp:Label ID="VinLabel" Width="105px" runat="server"

Text='<%# Eval("Vin") %>'>

 </asp:Label>

 Make:

 <asp:Label ID="MakeLabel" Width="105px" runat="server"

Text='<%# Eval("Make") %>'>

 </asp:Label>

 Model:

 <asp:Label ID="ModelLabel" Width="105px" runat="server"

Text='<%# Eval("Model") %>'>

 </asp:Label>

Year:

 <asp:Label ID="YearLabel" Width="105px" runat="server"

Text='<%# Eval("Year") %>'>

 </asp:Label>
</td></tr>

 <tr ><td align="center">

Price:

 <asp:Label ID="PriceLabel" Width="105px" runat="server"

Text='<%# Eval("Price","{0:C}") %>'>

 </asp:Label></td></tr>

 <tr><td align="center"><hr />

<asp:LinkButton ID="LinkButton1" runat="server"

 CausesValidation="False" CommandName="Edit" Text="Edit">

</asp:LinkButton>

Lesson 2: Working with Data-Bound Web Server Controls

<asp:LinkButton ID="LinkButton2" runat="server"

 CausesValidation="False" CommandName="New" Text="New">

</asp:LinkButton>

<asp:LinkButton ID="LinkButton3" runat="server"

 CausesValidation="False" CommandName="Delete" Text="Delete">

</asp:LinkButton> </td></tr> </table>

 </ItemTemplate>

 <EditItemTemplate>

<table>

<tr><td align="center"><hr />

 VIN:

 <asp:Label ID="VinLabel" Width="105px" runat="server"

Text='<%# Eval("Vin") %>'>

 </asp:Label>

 Make:

 <asp:TextBox ID="EditMakeTextBox" Width="100px" runat="server"

Text='<%# Bind("Make") %>'>

 </asp:TextBox>

 Model:

 <asp:TextBox ID="EditModelTextBox" Width="100px" runat="server"

Text='<%# Bind("Model") %>'>

 </asp:TextBox>

 Year:

 <asp:TextBox ID="EditYearTextBox" Width="100px" runat="server"

Text='<%# Bind("Year") %>'>

 </asp:TextBox>
 </td></tr>

 <tr><td align="center">

Price:

 <asp:TextBox ID="EditPriceTextBox" Width="100px" runat="server"

Text='<%# Bind("Price") %>'>

 </asp:TextBox></td></tr>

 <tr><td align="center"><hr />

 <asp:LinkButton ID="LinkButton1" runat="server"

 CausesValidation="True" CommandName="Update" Text="Update">

 </asp:LinkButton>

 <asp:LinkButton ID="LinkButton2" runat="server"

 CausesValidation="False" CommandName="Cancel" Text="Cancel">

 </asp:LinkButton></td></tr></table>

 </EditItemTemplate>

 <EmptyDataTemplate>

<table width="655px">

<tr><td align="center" ><hr />

No Cars For Sale - Chack Back Soon!

 <tr><td align="center"><hr />

<asp:LinkButton ID="LinkButton2" runat="server"

 CausesValidation="False" CommandName="New" Text="New">

</asp:LinkButton></td></tr></table>

 </EmptyDataTemplate>

 <InsertItemTemplate>

 <table>

197

198

Chapter 3 Exploring Specialized Server Controls

<tr><td align="center"><hr />

 VIN:

 <asp:TextBox ID="InsertVinTextBox" Width="100px" runat="server"

Text='<%# Bind("Vin") %>'>

 </asp:TextBox>

 Make:

 <asp:TextBox ID="InsertMakeTextBox" Width="100px" runat="server"

Text='<%# Bind("Make") %>'>

 </asp:TextBox>

 Model:

 <asp:TextBox ID="InsertModelTextBox" Width="100px" runat="server"

Text='<%# Bind("Model") %>'>

 </asp:TextBox>

 Year:

 <asp:TextBox ID="InsertYearTextBox" Width="100px" runat="server"

Text='<%# Bind("Year") %>'>

 </asp:TextBox>
 </td></tr>

 <tr><td align="center">

 Price:

 <asp:TextBox ID="InsertPriceTextBox" Width="100px" runat="server"

 Text='<%# Bind("Price") %>'></asp:TextBox></td></tr>

 <tr><td align="center"><hr />

 <asp:LinkButton ID="LinkButton1" runat="server"

 CausesValidation="True" CommandName="Insert" Text="Insert">

 </asp:LinkButton>

 <asp:LinkButton ID="LinkButton2" runat="server"

 CausesValidation="False" CommandName="Cancel" Text="Cancel">

 </asp:LinkButton></td></tr></table>

 </InsertItemTemplate>

 <HeaderTemplate>

<table><tr><td align="center">

 Car For Sale</td></tr>

<tr><td>

 </HeaderTemplate>

 <FooterTemplate>

</td></tr></table>

 </FooterTemplate>

</asp:FormView>

</form>

In the declarative markup, the ObjectDataSource is configured to use the CarList class,

which is a collection of Car objects. The FormView control is configured to allow edit

ing, deleting, and inserting Car rows. The Vin property is configured to display as

Lesson 2: Working with Data-Bound Web Server Controls

199

read-only when editing, and the Price property is configured to display as currency. To

show that you have lots of flexibility using templates with this control, the header,

footer, item, edit item, insert item, and empty data templates are configured.

The code-behind page only contains code to populate the car list when the Button con

trol is clicked, as follows:

'VB

Partial Class FormView_Control

 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 CarList.Initialize()

 FormView1.DataBind()

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class FormView : System.Web.UI.Page

{

protected void Button1_Click(object sender, EventArgs e)

{

 CarList.Initialize();

 FormView1.DataBind();

}

}

When this Web page is executed and displayed, the Web page displays the Button con

trol and the empty data template unless you have already populated the CarList. Click

the Button to populate the CarList collection and display the contents in the FormView,

using the item template. Click the New link on the bottom of the control to add a new

row and place the row into edit mode, as shown in Figure 3-47.

200

Chapter 3 Exploring Specialized Server Controls

Figure 3-47 The FormView control in edit mode after clicking the New link is populated from an

ObjectDataSource and CarList object.

The HierarchicalDataBoundControl Control

The HierarchicalDataBoundControl control serves as a base class for controls that ren

der data in a hierarchical fashion. The classes that inherit from HierarchicalDataBound-

Control are TreeView and Menu, as shown in Figure 3-48.

WebControl

Class

 Control

BaseDataBoundControl

Abstract Class

 WebControl

TreeView

Class

HierarchicalDataBoundControl

Abstract Class

 BaseDataBoundControl

Properties

DataSourceID

Menu

Class

 HierarchicalDataBoundControl HierarchicalDataBoundControl

Figure 3-48 The HierarchicalDataBoundControl class hierarchy.

The TreeView Control

Lesson 2: Working with Data-Bound Web Server Controls

201

The TreeView is a data-bound control that is used to display hierarchical data, such as

a listing of files and folders, or a table of contents in a tree structure. The nodes of this

control can be bound to XML, tabular, or relational data. This control can also provide

site navigation when used with the SiteMapDataSource control. The TreeView control

class hierarchy is shown in Figure 3-49.

NOTE .NET 2.0

The TreeView is new in ASP.NET version 2.0.

WebControl

Class

 Control

BaseDataBoundControl

Abstract Class

 WebControl

HierarchicalDataBoundControl

Abstract Class

 BaseDataBoundControl

TreeNodeBinding

Sealed Class

Properties

DataMember

Depth

FormatString
ImageToolTip
ImageToolTipField

ImageUrl
ImageUrlField

NavigateUrl
NavigateUrlField DataBindings
PopulateOnDemand

SelectAction
ShowCheckBox

Target
TargetField
Text

TextField
ToolTip

ToolTipField
Value
ValueField

Methods

ToString

TreeNodebinding

TreeView

Class
HierarchicalDataBoundControl

Properties

AutoGenerateDataBindings

CollapseImageToolTip

CollapseImageUrl
EnableClientScript
ExpandDepth

ExpandImageToolTip
ExpandImageUrl

HoverNodeStyle
ImageSet
LeafNodeStyle

LevelStyles
LineImageFolder

MaxDataBindDepth
NodeIndent
NodeStyle

NodeWrap
NoExpandImageUrl

ParentNodeStyle
PathSeparator
PopulateNodesFromClient

RootNodeStyle
SelectedNodeStyle

SelectedValue
ShowCheckBoxes
ShowExpandCollapse

ShowLines
SkipLinkText

TagKey
Target
Visible

Methods

CollapseAll

DataBind

ExpandAll
FindNode

RenderBeginTag
RenderEndTag
TreeView

Events

SelectNodeChanged

TreeNodeCheckChanged

TreeNodeCollpased
TreeNodeDataBound

TreeNodeExpanded
TreeNodePopulate

CheckedNodes

SelectedNode

Nodes

ChildNodes

TreeNode

Class

Properties

Checked

DataBound

DataItem
DataPath
Depth

Expanded
ImageToolTip

ImageUrl
IsTrackingViewState
NavigateUrl

Parent
PopulateOnDemand

SelectAction
Selected
ShowCheckBox

Target
Text

ToolTip
Value
ValuePath

Methods

Clone

Collapse

CollapseAll
Expand
ExpandAll

LoadViewState
RenderPostText

RenderPreText
SaveViewState
Select

ToggleExpandState
TrackViewState

TreeNode(+5 overloads)

Figure 3-49 The TreeView control hierarchy.

202

Chapter 3 Exploring Specialized Server Controls

You can programmatically access and control the properties of the TreeView control.

The TreeView can also be populated via client-side script on Internet Explorer 5.0 and

later, and on Netscape 6.0 and later. In addition, nodes can be displayed as either

plain text or hyperlinks, and you can optionally display a check box next to each

node.

Each entry in the tree is called a node and is represented by a TreeNode object. A node

that contains other nodes is called a parent node. A node that is contained by another

node is called a child node. A node can be a parent node and a child node. A node that

has no children is called a leaf node. A node that is not contained by any other node

but is the ancestor to all the other nodes is the root node.

The typical TreeView tree structure has only one root node, but you can add multiple

root nodes to the tree structure. This means that you can display a tree hierarchy with

out being forced to have a single root node.

The TreeNode has a Text property that is populated with the data that is to be dis

played. The TreeNode also has a Value property that is used to store the data that is

posted back to the Web server.

A node can be configured to be a selection node or a navigation node by setting the

NavigateUrl property. If the NavigateUrl property is set to an empty string

(string.Empty), it is a selection node, where clicking the node simply selects it. If the

NavigateUrl property is not set to an empty string, it is a navigation node, where click

ing the node attempts to navigate to the location that is specified by the NavigateUrl

property.

Populating the TreeView Control

The TreeView control can be populated using static data or by data binding to the

control. To populate the TreeView control with static data, you can use declarative

syntax by placing opening and closing <Nodes> tags in the TreeView element, and then

creating a structure of nested <asp:TreeNode> elements within the <Nodes> element.

Each <asp:TreeNode> has properties that you can set by adding attributes to the

<asp:TreeNode> element.

To use data binding to populate the TreeView control, you can use any data source that

implements the IHierarchicalDataSource interface, such as an XmlDataSource control

or a SiteMapDataSource control. Simply set the DataSourceID property of the TreeView

control to the ID value of the data source control, and the TreeView control automati

cally binds to the specified data source control.

Lesson 2: Working with Data-Bound Web Server Controls

203

You can also bind to an XmlDocument object or a DataSet object that contains

DataRelation objects by setting the DataSource property of the TreeView control to

the data source, and then calling the DataBind method.

The TreeView control contains a DataBindings property that is a collection of Tree-

NodeBinding objects that define the binding between a data item and the TreeNode.

You can specify the criteria for binding and the data item property to display in the

node. This is useful when binding to XML elements where you are interested in

binding to an attribute of the element.

Security Alert The TreeView control performs client-side JavaScript callbacks when expanding

nodes. A malicious user can craft a callback to get TreeView data that you may have tried to hide

using the MaxDataBindDepth property, so don’t use the MaxDataBindDepth as a means to hide sen

sitive data.

The following is an example of using the TreeView control to display customer data

from a new file called Customers.xml, which contains a list of customers, their orders

and invoices, and the order items for each order. This data is stored in a hierarchical

format in the XML file. The Customers.xml file looks like the following:

Customers.xml File
<?xml version="1.0" encoding="utf-8" ?>

<Customers>

<Customer CustomerId="1" Name="Northwind Traders">

 <Orders>

 <Order OrderId="1" ShipDate="06-22-2006">

<OrderItems>

 <OrderItem OrderItemId="1" PartNumber="123"

 PartDescription="Large Widget" Quantity="5"

 Price="22.00" />

 <OrderItem OrderItemId="2" PartNumber="234"

 PartDescription="Medium Widget" Quantity="2"

 Price="12.50" />

</OrderItems>

 </Order>

 <Order OrderId="2" ShipDate="06-25-2006">

<OrderItems>

 <OrderItem OrderItemId="5" PartNumber="432"

 PartDescription="Small Widget" Quantity="30"

 Price="8.99" />

 <OrderItem OrderItemId="4" PartNumber="234"

 PartDescription="Medium Widget" Quantity="2"

 Price="12.50" />

</OrderItems>

 </Order>

 </Orders>

204

Chapter 3 Exploring Specialized Server Controls

 <Invoices>

 <Invoice InvoiceId="6" Amount="99.37" />

 <Invoice InvoiceId="7" Amount="147.50" />

 </Invoices>

</Customer>

<Customer CustomerId="2" Name="Tailspin Toys">

 <Orders>

 <Order OrderId="8" ShipDate="07-11-2006">

<OrderItems>

 <OrderItem OrderItemId="9" PartNumber="987"

 PartDescription="Combo Widget" Quantity="2"

 Price="87.25" />

 <OrderItem OrderItemId="10" PartNumber="654"

 PartDescription="Ugly Widget" Quantity="1"

 Price="2.00" />

</OrderItems>

 </Order>

 <Order OrderId="11" ShipDate="08-21-2006">

<OrderItems>

 <OrderItem OrderItemId="12" PartNumber="999"

 PartDescription="Pretty Widget" Quantity="50"

 Price="78.99" />

 <OrderItem OrderItemId="14" PartNumber="575"

 PartDescription="Tiny Widget" Quantity="100"

 Price="1.20" />

</OrderItems>

 </Order>

 </Orders>

 <Invoices>

 <Invoice InvoiceId="26" Amount="46.58" />

 <Invoice InvoiceId="27" Amount="279.15" />

 </Invoices>

</Customer>

</Customers>

An XmlDataSource and a TreeView control are added to the Web page and configured.

The following is the Web page markup, showing everything inside the form element:

ASPX Declarative Markup
<form id="form1" runat="server">

<div>

 <asp:XmlDataSource ID="XmlDataSource1" runat="server"

 DataFile="~/App_Data/Customers.xml">

 </asp:XmlDataSource>

 <asp:TreeView ID="TreeView1" runat="server"

 DataSourceID="XmlDataSource1"

 ShowLines="True" ExpandDepth="0">

 <DataBindings>

 <asp:TreeNodeBinding DataMember="Customer"

TextField="Name" ValueField="CustomerId" />

 <asp:TreeNodeBinding DataMember="Order"

TextField="ShipDate" ValueField="OrderId" />

Lesson 2: Working with Data-Bound Web Server Controls

 <asp:TreeNodeBinding DataMember="OrderItem"

TextField="PartDescription" ValueField="OrderItemId" />

 <asp:TreeNodeBinding DataMember="Invoice"

TextField="Amount" ValueField="InvoiceId"

FormatString="{0:C}" />

 </DataBindings>

 </asp:TreeView>

</div>

</form>

205

In this example, the configuration was kept to a minimum, but configuration was

required in order to display information that is more important than the XML ele

ment name, such as the customer’s name instead of the XML element name (Cus

tomer). The following code was added to the code-behind page to simply display the

value of the selected node:

'VB

Partial Class TreeView_Control

 Inherits System.Web.UI.Page

Protected Sub TreeView1_SelectedNodeChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles TreeView1.SelectedNodeChanged

 Response.Write("Value:" + TreeView1.SelectedNode.Value)

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class TreeView_Control : System.Web.UI.Page

{

protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)

{

 Response.Write("Value:" + TreeView1.SelectedNode.Value);

}

}

When the Web page is displayed, the Customers node is visible, but you can click the

plus (+) sign to expand the node as shown in Figure 3-50.

206

Chapter 3 Exploring Specialized Server Controls

Figure 3-50 The TreeView displays the nodes as configured.

The Menu Control

The Menu control is a data-bound control that is used to display hierarchical data in

the form of a menu system. The Menu control is often used in combination with a

SiteMapDataSource control for navigating a Web site. The Menu control class hierarchy

is shown in Figure 3-51.

NOTE .NET 2.0

The Menu is new in ASP.NET version 2.0.

The Menu control can be populated using static data or by data binding to the con

trol. To populate the Menu control with static data, you can use declarative syntax

by placing opening and closing <Items> tags in the Menu element, and then you can

create a structure of nested <asp:MenuItem> elements within the <Items> element.

Each <asp:MenuItem> has properties that you can set by adding attributes to the

<asp:MenuItem> element.

To use data binding to populate the Menu control, you can use any data source that

implements the IHierarchicalDataSource interface, such as an XmlDataSource control

or a SiteMapDataSource control. Simply set the DataSourceID property of the Menu

control to the ID value of the data source control, and the Menu control automatically

binds to the specified data source control.

Lesson 2: Working with Data-Bound Web Server Controls

207

WebControl

Class

 Control

BaseDataBoundControl

Abstract Class

 WebControl

HierarchicalDataBoundControl

Abstract Class

 BaseDataBoundControl

MenuItemBinding

Sealed Class

Properties

DataMember

Depth

Enabled
EnabledField
FormatString

ImageUrl
ImageUrlField

NavigateUrl
NavigateUrlField

PopOutImageUrl DataBindings
PopOutImageUrlField
Selectable

SelectableField
SeparatorImageUrl

SeparatorImageUrlField
Target
TargetField

Text
TextField

ToolTip
ToolTipField
Value

ValueField

Methods

MenuItemClick

MenuItemDataBound

Menu

Class
HierarchicalDataBoundControl

Fields

MenuItemClickCommandName

Properties

Controls

DisappearAfter

DynamicBottomSeparatorImageUrl
DynamicEnableDefaultPopOutImage

DynamicHorizontalOffset
DynamicHoverStyle
DynamicItemFormatString

DynamicItemTemplate
DynamicMenuItemStyle

DynamicMenuStyle
DynamicPopOutImageTextFormatString
DynamicPopOutImageUrl

DynamicSelectedStyle
DynamicTopSeparatorImageUrl

DynamicVerticalOffset
ItemWrap
LevelMenuItemStyles

LevelSelectedStyles
LevelSubMenuStyles

MaximumDynamicDisplayLevels
Orientation
PathSeparator

ScrollDownImageUrl
ScrollDownText

ScrollUpImageUrl
ScrollUpText
SelectedValue

SkipLinkText
StaticBottomSeparatorImageUrl

StaticDisplayLevels
StaticEnableDefaultPopOutImage
StaticHoverStyle

StaticItemFormatString
StaticItemTemplate

StaticMenuStyle
StaticPopOutImageTextFormatString
StaticPopOutImageUrl

StaticSelectedStyle
StaticSubMenuIndent

StaticTopSeparatorImageUrl
TagKey
Target

Methods

DataBind

FindItem

Menu
RenderBeginTag
RenderEndTag

Events

MenuItemClick

MenuItemDataBound

SelectedItem

Items

MenuItem
Sealed Class

Properties

ChildItems

DataBound

DataItem
DataPath

Depth
Enabled
ImageUrl

NavigateUrl
Parent

PopOutImageUrl
Selectable
Selected

SeparatorImageUrl
Target

Text
ToolTip
Value

ValuePath

Methods

MenuItem(+5 overloads)

Figure 3-51 The Menu control hierarchy.

You can also bind to an XmlDocument object or a DataSet object that contains

DataRelation objects by setting the DataSource property of the Menu control to the

data source, and then call the DataBind method.

The Menu control contains a DataBindings property that is a collection of MenuItem-

Binding objects that define the binding between data items and TreeNodes. You can

specify the criteria for binding and the data item properties to display in the nodes.

This is useful when binding to XML elements where you are interested in binding to

an attribute of the element.

208

Chapter 3 Exploring Specialized Server Controls

The following is an example of using the Menu control to display menu data from a

new file called MenuItems.xml, which contains a list of the menu items to be dis

played. The data is stored in a hierarchical format in the XML file. The MenuItems.xml

file looks like the following:

MenuItems.xml File
<?xml version="1.0" encoding="utf-8" ?>

<MenuItems>

<Home display="Home" url="~/" />

<Products display="Products" url="~/products/">

 <SmallWidgets display="Small Widgets"

 url="~/products/smallwidgets.aspx" />

 <MediumWidgets display="Medium Widgets"

 url="~/products/mediumwidgets.aspx" />

 <BigWidgets display="Big Widgets"

 url="~/products/bigwidgets.aspx" />

</Products>

<Support display="Support" url="~/Support/">

 <Downloads display="Downloads"

 url="~/support/downloads.aspx" />

 <FAQs display="FAQs"

 url="~/support/faqs.aspx" />

</Support>

<AboutUs display="About Us" url="~/aboutus/">

 <Company display="Company"

 url="~/aboutus/company.aspx" />

 <Locations display="Location"

 url="~/aboutus/locations.aspx" />

</AboutUs>

</MenuItems>

An XmlDataSource, a Menu, and a Label control are added to the Web page. The

XmlDataSource is configured to use the XML file. The Menu control is configured

to use the XmlDataSource. The following is the Web page markup, showing every

thing inside the form element:

ASPX Declarative Markup
<form id="form1" runat="server">

<div>

 <asp:Menu ID="Menu1" runat="server" DataSourceID="XmlDataSource1"

 OnMenuItemClick="Menu1_MenuItemClick">

 </asp:Menu>

 <asp:XmlDataSource ID="XmlDataSource1" runat="server"

 DataFile="~/App_Data/MenuItems.xml"

Lesson 2: Working with Data-Bound Web Server Controls

 XPath="/MenuItems/*"></asp:XmlDataSource>

</div>

<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

</form>

209

In this example, showing the MenuItems root node in the XML file was not desirable,

so an XPath expression was supplied to retrieve the nodes that exist under the Menu-

Items element. The following code was added to the code-behind page to simply dis

play the ValuePath property of the selected MenuItem:

'VB

Partial Class Menu_Control

Inherits System.Web.UI.Page

Protected Sub Menu1_MenuItemClick(ByVal sender As Object, _

 ByVal e As System.Web.UI.WebControls.MenuEventArgs) _

 Handles Menu1.MenuItemClick

 Label1.Text = e.Item.ValuePath

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class Menu_Control : System.Web.UI.Page

{

protected void Menu1_MenuItemClick(object sender, MenuEventArgs e)

{

 Label1.Text = e.Item.ValuePath;

}

}

When the Web page is displayed, the Menu displays and you can hover above a menu

item to see its child menu items, as shown in Figure 3-52.

210

Chapter 3 Exploring Specialized Server Controls

Figure 3-52 The Menu displays the nodes as configured.

Quick Check

1. What method should you call on a data-bound control when the data is

ready to be read from the data source?

2. What method is used in a FormView to perform a two-way data binding?

3. What GUI object can provide a data source that allows you to connect mid

dle-tier objects to data-bound controls?

4. What must you do to minimize cross-site scripting vulnerabilities when dis

playing untrusted data in a RadioButtonList control?

Quick Check Answers

1. The DataBind method.

2. The Bind method.

3. The ObjectDataSource control.

4. You must HtmlEncode the data.

Lab: Use the GridView and DetailsView Controls

In this lab, you use the GridView and DetailsView controls together to create a master/

detail page. The GridView is used to display a list of customer names and IDs, with a

select link for each customer. The DetailsView displays all of the customer information

for editing while providing the ability to add new customers.

Lesson 2: Working with Data-Bound Web Server Controls

� Exercise 1: Create the Site and the Data Classes

211

In this exercise, you create a new Web site and add the data classes for the customers.

1. Open Visual Studio 2005 and create a new Web site called UsingDataBound-

Controls, using your preferred programming language. When the new Web site

is created, a Web page called Default.aspx is displayed.

2. In the Solution Explorer, right-click the Web Site and select Add New Item. Add

a class, and name it Customer. You will be prompted to add this into an

App_Code folder; click Yes.

3. Add public properties and private fields for the following customer attributes:

Property

Id

Name

City

State

Phone

DataType

Int32

String

String

String

String

4. Keep the existing parameterless constructor, and add a constructor for the class

that accepts all of the data that was defined in the previous step. The Customer

class should look like the following:

'VB

Imports Microsoft.VisualBasic

Public Class Customer

Public Property Id() As Integer

 Get

 Return _id

 End Get

 Set(ByVal value As Integer)

 _id = value

 End Set

End Property

Private _id As Integer

Public Property Name() As String

 Get

 Return _name

 End Get

212

Chapter 3 Exploring Specialized Server Controls

 Set(ByVal value As String)

 _name = value

 End Set

End Property

Private _name As String

Public Property City() As String

 Get

 Return _city

 End Get

 Set(ByVal value As String)

 _city = value

 End Set

End Property

Private _city As String

Public Property State() As String

 Get

 Return _state

 End Get

 Set(ByVal value As String)

 _state = value

 End Set

End Property

Private _state As String

Public Property Phone() As String

 Get

 Return _phone

 End Get

 Set(ByVal value As String)

 _phone = value

 End Set

End Property

Private _phone As String

Public Sub New()

End Sub

Public Sub New(ByVal _id As Integer, ByVal _name As String, _

 ByVal _city As String, ByVal _state As String, ByVal _phone As String)

 Id = _id : Name = _name : City = _city

 State = _state : Phone = _phone

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

Lesson 2: Working with Data-Bound Web Server Controls

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public class Customer

{

public Int32 Id

{

 get { return id; }

 set { id = value; }

}

private Int32 id;

public string Name

{

 get { return name; }

 set { name = value; }

}

private string name;

public string City

{

 get { return city; }

 set { city = value; }

}

private string city;

public string State

{

 get { return state; }

 set { state = value; }

}

private string state;

public string Phone

{

 get { return phone; }

 set { phone = value; }

}

private string phone;

public Customer()

{

}

public Customer(int id, string name, string city,

 string state, string phone)

{

 Id = id; Name = name; City = city;

 State = state; Phone = phone;

}

}

213

214

Chapter 3 Exploring Specialized Server Controls

5. Add another class to the App_Code folder called CustomerList. Add a private

shared field (in C#, use static keyword) called custList and initialize it.

6. Add a method called Select that returns the custList.

7. Add a method called Update that accepts a Customer as a parameter. Search the

custList for a match based on the the Id property. After finding the customer,

update all of the properties except the Id. (Hint: In C#, the search can be per

formed using an anonymous method, but in VB.NET, you need to create a helper

method to perform the find.)

8. Add a method called Insert that accepts a Customer parameter. In this method,

add the Customer to the custList.

9. Add a method called Delete that accepts a Customer parameter. In this method,

find the matching Customer object and delete it.

10. Add a method called SelectSingle that accepts an id as Int32 parameter. In this

method, return nothing (in C#, null) if the id parameter is -1; else, return the cus

tomer whose Id property matches the id parameter.

Your CustomerList should look like the following:

'VB

Imports Microsoft.VisualBasic

Imports System.Collections.Generic

Public Class CustomerList

Private Shared custList As New List(Of Customer)()

Public Function [Select]() As List(Of Customer)

 Return custList

End Function

Public Function SelectSingle(ByVal selectCustomerId As Integer) As Customer

 If selectCustomerId = -1 Then Return Nothing

 current = New Customer() : current.Id = selectCustomerId

 Return custList.Find(AddressOf MatchId)

End Function

Public Sub Update(ByVal updateCustomer As Customer)

 current = updateCustomer

 Dim customerFound As Customer = custList.Find(AddressOf MatchId)

 customerFound.Id = updateCustomer.Id

 customerFound.Name = updateCustomer.Name

 customerFound.City = updateCustomer.City

 customerFound.State = updateCustomer.State

 customerFound.Phone = updateCustomer.Phone

End Sub

Lesson 2: Working with Data-Bound Web Server Controls

Private current As Customer

Private Function MatchId(ByVal _customer As Customer) As Boolean

 Return IIf(current.Id = _customer.Id, True, False)

End Function

Public Sub Insert(ByVal _customer As Customer)

 custList.Add(_customer)

End Sub

Public Sub Delete(ByVal deleteCustomer As Customer)

 current = deleteCustomer

 Dim customerFound As Customer = custList.Find(AddressOf MatchId)

 custList.Remove(customerFound)

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Collections.Generic;

public class CustomerList

{

private static List<Customer> custList = new List<Customer>();

public List<Customer> Select()

{

 return custList;

}

public Customer SelectSingle(int selectCustomerId)

{

 if (selectCustomerId == -1) return null;

 return custList.Find(

delegate(Customer customer)

{ return customer.Id == selectCustomerId; });

}

public void Update(Customer updateCustomer)

{

 Customer customerFound = custList.Find(

delegate(Customer customer)

{ return customer.Id == updateCustomer.Id; });

 customerFound.Id = updateCustomer.Id;

 customerFound.Name = updateCustomer.Name;

215

http://_customer.Id

216

Chapter 3 Exploring Specialized Server Controls

 customerFound.City = updateCustomer.City;

 customerFound.State = updateCustomer.State;

 customerFound.Phone = updateCustomer.Phone;

}

public void Insert(Customer _customer)

{

 custList.Add(_customer);

}

public void Delete(Customer deleteCustomer)

{

 Customer customerFound = custList.Find(

 delegate(Customer customer)

 { return customer.Id == deleteCustomer.Id; });

 custList.Remove(customerFound);

}

}

11. Build the Web site to assure that there are no errors.

� Exercise 2: Add and Configure the Controls

In this exercise, you create a new Web site and add the data classes for the customers.

1. Open Visual Studio 2005 and open the Web site called UsingDataBoundCon

trols that you created in the previous exercise. Alternatively, you can open the

completed Lesson 2, Exercise 1 project from the CD.

2. Open the Default.aspx Web page in Design view.

3. Drag and drop two ObjectDataSource controls, a GridView, and a DetailsView onto

the Web page.

4. Click the symbol in the upper-left corner of the ObjectDataSource1 control to dis

play the ObjectDataSource Tasks window. Click Configure Data Source link to

start the Wizard.

5. In the Choose Business Object screen, select the CustomerList, and click Next.

6. In the Define Data Methods screen, choose the Select method for the Select tab.

On the Update tab, select the Update method. On the Insert tab, select the Insert

method, and on the Delete tab, select the Delete method. Click Finish.

7. Click the symbol in the upper-left corner of the ObjectDataSource2 control to dis

play the ObjectDataSource Tasks window. Click Configure Data Source link to

start the Wizard.

8. In the Choose Business Object screen, select the CustomerList, and click Next.

Lesson 2: Working with Data-Bound Web Server Controls

217

9. In the Define Data Methods screen, choose the SelectSingle method for the Select

tab. When prompted for the select parameter, set the Parameter Source to Con

trol, the Control ID to GridView1, and set a Default Value of -1. On the Update

tab, select the Update method. On the Insert tab, select the Insert method, and on

the Delete tab, select the Delete method. Click Finish.

10. Click the symbol in the upper-left corner of the GridView control to display the

GridView Tasks window. Choose ObjectDataSource1 as the Data Source.

11. Click Enable Paging and Enable Selection.

12. Click Edit Columns. Delete all the fields from the Selected Fields list except Select,

Id, and Name.

13. In the GridView Properties window, set the DataKeyNames to Id.

14. Set the EnableViewState property to false.

15. Right-click the GridView and click AutoFormat. Select the Professional format

and click OK.

16. Click the symbol in the upper-left corner of the DetailsView control to display the

DetailsView Tasks window. Choose ObjectDataSource2 as the Data Source.

17. Click Enable Inserting, Enable Editing, and Enable Deleting.

18. Click Edit Fields and order the fields as Id, Name, City, State, and Phone.

19. Click the Id field and set the ReadOnly property to true.

20. Click Edit Templates and select the EmptyData Template. Type No Customer

Selected and add a LinkButton. Set the LinkButton control’s CausesValidation

property to false. Set its CommandName property to New. Set its Text property to

New. In the DetailView Tasks window, click End Template Editing.

21. In the DetailsView Properties window, set the DataKeyNames to Id.

22. Right-click the DetailsView and click AutoFormat. Select the Professional format

and click OK.

The completed Web page is shown in Figure 3-53.

218

Chapter 3 Exploring Specialized Server Controls

Figure 3-53 The completed master/detail form.

23. Press F5 to run the Web application.

24. No customers exist, so you should see the message that states that no customer

has been selected. Click New LinkButton, and enter several customers.

25. Notice that the GridView is updated to show the added customers.

26. In the GridView, click one of the Select links. This causes the details to be dis

played in the DetailsView, as shown in Figure 3-54.

Figure 3-54 Clicking the Select link on the GridView displays the customer in the DetailsView

control.

Chapter 4

Using ADO.NET and XML
with ASP.NET

Probably the most important facet of any application is the retrieval and storage of

data. At the end of the day, virtually all applications exist for the purpose of data

retrieval or data storage.

The previous chapter covered data-bound controls and demonstrated their uses with

object data, primarily using the objects and the ObjectDataSource to populate the

control.

This chapter covers the classes that are available in ADO.NET, which are split into two

categories: connected and disconnected. Like the data-bound controls that were cov

ered in the previous chapter, you can use the disconnected classes without ever con

necting to a database, while the connected classes are specific to the database that

you’re connecting to. Figure 4-1 shows the major disconnected and connected

classes. This chapter covers these classes as well as other ADO.NET classes.

Figure 4-1 The major disconnected and connected classes.

http://ADO.NET

226

Chapter 4 Using ADO.NET and XML with ASP.NET

The use of Extensible Markup Language (XML) is rapidly growing among companies

that read and write data to XML files and also those that send and receive data in XML

formatted messages. This chapter also covers the classes that are available in XML and

their roles in providing data storage and retrieval.

Exam objectives in this chapter:

■ Manage connections and transactions of databases.

❑ Configure a connection to a database graphically by using the Connection

Wizard.

❑ Configure a connection by using the Server Explorer.

❑ Configure a connection to a database by using the connection class.

❑ Connect to a database by using specific database connection objects.

❑ Enumerate through instances of Microsoft SQL Server by using the

DbProviderFactories.GetFactoryClasses method.

❑ Open a connection by using the Open method of a connection object.

❑ Close a connection by using the connection object.

❑ Secure a connection to protect access to your data source.

❑ Create a connection designed for reuse in a connection pool.

❑ Control connection pooling by configuring ConnectionString values based

on database type.

❑ Use connection events to detect database information.

❑ Handle connection exceptions when connecting to a database.

❑ Perform transactions using the ADO.NET Transaction object.

■ Create, delete, and edit data in a connected environment.

❑ Retrieve data by using a DataReader object.

❑ Build SQL commands visually in Server Explorer.

❑ Build SQL commands in code.

❑ Create parameters for a command object.

❑ Perform database operations by using a command object.

Chapter 4 Using ADO.NET and XML with ASP.NET

❑ Retrieve data from a database by using a command object.

❑ Perform asynchronous operations by using a command object.

❑ Perform bulk copy operations to copy data to a SQL Server computer.

❑ Store and retrieve binary large object (BLOB) data types in a database.

■ Create, delete, and edit data in a disconnected environment.

❑ Create an instance of the DataSet class programmatically.

❑ Create a DataSet graphically.

❑ Create a DataSet programmatically.

❑ Add a DataTable to a DataSet.

❑ Add a relationship between tables.

❑ Navigate a relationship between tables.

❑ Merge DataSet contents.

❑ Copy DataSet contents.

❑ Create a strongly typed DataSet.

❑ Create DataTables.

❑ Manage data within a DataTable.

❑ Create and use DataViews.

❑ Represent data in a DataSet by using XML.

227

❑ Access an ADO Recordset or Record by using the OleDbDataAdapter object.

❑ Generate DataAdapter commands automatically by using the Command-

Builder object.

❑ Generate DataAdapter commands programmatically.

❑ Populate a DataSet by using a DataAdapter.

❑ Update the database by using a DataAdapter.

❑ Resolve conflicts between a DataSet and a database by using the Data-

Adapter.

228

Chapter 4 Using ADO.NET and XML with ASP.NET

❑ Respond to changes made to data at the data source by using DataAdapter

events.

❑ Perform batch operations by using DataAdapters.

■ Manage XML data with the XML Document Object Model (DOM).

❑ Read XML data into the DOM by using the Load method.

❑ Modify an XML document by adding and removing nodes.

❑ Modify nodes in an XML document.

❑ Write data in XML format from the DOM.

❑ Work with nodes in the XML DOM by using XmlNamedNodeMap and the

XmlNodeList.

❑ Handle DOM events.

❑ Modify XML declaration.

■ Read and write XML data by using the XmlReader and XmlWriter.

❑ Read XML data by using the XmlReader.

❑ Read all XML element and attribute content.

❑ Read specific element and attribute content.

❑ Read XML data by using the XMLTextReader class.

❑ Read node trees by using the XmlNodeReader.

❑ Validate XML data by using the XmlValidatingReader.

❑ Write XML data by using the XmlWriter.

Lessons in this chapter:

■ Lesson 1: Using the ADO.NET Disconnected Classes 230

■ Lesson 2: Using the ADO.NET Connected Classes . 280

■ Lesson 3: Working with XML Data. 346

Before You Begin

Before You Begin

229

To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed with

Microsoft SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

■ Be able to add Web server controls to a Web page.

■ Be familiar with SQL Server.

Real World

Glenn Johnson

Developers spend lots of time creating controls that are specific to the tasks that

need to be accomplished, but in many cases, the specialized data-bound controls

that are built-in can be used with simple formatting and configuration changes.

230

Chapter 4 Using ADO.NET and XML with ASP.NET

Lesson 1: Using the ADO.NET Disconnected Classes

This lesson covers the disconnected data access classes that are instantiated within

the Web application and can be used without ever connecting to a data store. When

working with disconnected data, you must at least use the DataTable object, so this

lesson starts by covering the DataTable and the objects that the DataTable object

works with. After covering the DataTable, the DataSet and the DataTableReader, this

chapter covers objects.

After this lesson, you will be able to:

■ Identify and use the following disconnected data classes in your Web application:

❑ DataTable

❑ DataColumn

❑ DataRow

Estimated lesson time: 60 minutes

Getting Started with the DataTable Object

The DataTable object represents tabular data as rows, columns, and constraints. Use

the DataTable object to hold data in memory while performing disconnected data

operations. The DataTable object can be explicitly created by instantiating the Data-

Table class, adding DataColumn objects that define the data to be held, and then add

ing DataRow objects, which are objects that contain the data. The DataTable object

must contain DataColumn objects before any data can be added to the DataTable

object. The DataColumn objects also contain constraints, which maintain data integrity

by limiting the data that can be placed into a column. The following code creates an

employee DataTable and adds DataColumn objects:

'VB

Private Function GetDataTable() As DataTable

 'Create the DataTable named "Employee"

 Dim employee As New DataTable("Employee")

 'Add the DataColumn using all properties

 Dim eid As New DataColumn("Eid")

 eid.DataType = GetType(String)

 eid.MaxLength = 10

 eid.Unique = True

 eid.AllowDBNull = False

 eid.Caption = "EID"

 employee.Columns.Add(eid)

Lesson 1: Using the ADO.NET Disconnected Classes

231

 'Add the DataColumn using defaults

 Dim firstName As New DataColumn("FirstName")

 firstName.MaxLength = 35

 firstName.AllowDBNull = False

 employee.Columns.Add(firstName)

 Dim lastName As New DataColumn("LastName")

 lastName.AllowDBNull = False

 employee.Columns.Add(lastName)

 'Add the decimal DataColumn using defaults

 Dim salary As New DataColumn("Salary", GetType(Decimal))

 salary.DefaultValue = 0.0

 employee.Columns.Add(salary)

 'Derived column using expression

Dim lastNameFirstName As New DataColumn("LastName and FirstName")

 lastNameFirstName.DataType = GetType(String)

 lastNameFirstName.MaxLength = 70

 lastNameFirstName.Expression = "lastName + ', ' + firstName"

 employee.Columns.Add(lastNameFirstName)

 Return employee

End Function

//C#

private DataTable GetDataTable()

{

 //Create the DataTable named "employee"

 DataTable employee = new DataTable("Employee");

 //Add the DataColumn using all properties

 DataColumn eid = new DataColumn("Eid");

 eid.DataType = typeof(string);

 eid.MaxLength = 10;

 eid.Unique = true;

 eid.AllowDBNull = false;

 eid.Caption = "EID";

 employee.Columns.Add(eid);

 //Add the DataColumn using defaults

 DataColumn firstName = new DataColumn("FirstName");

 firstName.MaxLength = 35;

 firstName.AllowDBNull = false;

 employee.Columns.Add(firstName);

 DataColumn lastName = new DataColumn("LastName");

 lastName.AllowDBNull = false;

 employee.Columns.Add(lastName);

232

Chapter 4 Using ADO.NET and XML with ASP.NET

 //Add the decimal DataColumn using defaults

 DataColumn salary = new DataColumn("Salary", typeof(decimal));

 salary.DefaultValue = 0.00m;

 employee.Columns.Add(salary);

 //Derived column using expression

 DataColumn lastNameFirstName = new DataColumn("LastName and FirstName");

 lastNameFirstName.DataType = typeof(string);

 lastNameFirstName.MaxLength = 70;

 lastNameFirstName.Expression = "lastName + ', ' + firstName";

 employee.Columns.Add(lastNameFirstName);

 return employee;

}

In this example, the DataType is a string for all DataColumn objects except salary,

which is a decimal object that contains currency. The MaxLength property constrains

the length of string data. The string data is truncated if you exceed this length and no

exception is thrown. If the Unique property is set to true, an index is created to prevent

duplication of entries. The AllowDBNull property is set to false to mandate the popu

lation of the column with data. The Caption property is a string that holds the column

heading that is to be displayed when this DataTable object is used with Web server

controls. The lastNameFirstName DataColumn object shows how an expression col

umn is created, in this case, by assigning an expression. Expression columns are also

known as calculated or derived columns. Adding a derived column is especially ben

eficial when data is available but not in the correct format.

The following is a list of the default values for DataColumn properties if you create a

DataColumn without specifying a value for a property:

■ DataType String

■ MaxLength –1, which means that no maximum length check is performed

■ Unique False, which allows duplicate values

■ AllowDBNull True, which means that the DataColumn does not need to have a

value

■ Caption The DataColumn object, which is the ColumnName property value

Creating Primary Key Columns

The primary key of a DataTable object consists of one or more columns, which have

data that provides a unique identity for each data row. In the Employee example, the

employee identification (Eid) is considered to be a unique key that can be used to

retrieve the data for a given employee. In some scenarios, a unique key might require

Lesson 1: Using the ADO.NET Disconnected Classes

233

combining two or more fields to achieve uniqueness. For example, a sales order typi

cally contains line items. The primary key for each of the Line Item rows would typi

cally be a combination of the order number and the line number. The PrimaryKey

property must be set to an array of DataColumn objects to accommodate composite

(multiple) keys. The following code shows how to set the PrimaryKey property for the

Employee DataTable object:

'VB

'Set the Primary Key

employee.PrimaryKey = new DataColumn(){eid}

//C#

//Set the Primary Key

employee.PrimaryKey = new DataColumn[] {eid};

Adding Data with DataRow Objects

After the DataTable is created with its schema, the DataTable is populated by adding

DataRow objects. A DataRow object is created by a DataTable because the DataRow

must conform to constraints of the DataTable object’s columns.

Adding Data to the DataTable The DataTable object contains a Rows collection,

which contains a collection of DataRow objects. You can insert data into the Rows col

lection by using the Add method on the Rows collection or by using the Load method

on the DataTable object.

The Add method contains an overload that accepts an array of objects instead of a

DataRow object. The array of objects must match the quantity and data type of Data-

Column objects in the DataTable.

The Load method can be used to update existing DataRow objects or load new

DataRow objects. The PrimaryKey property must be set so the DataTable object can

locate the DataRow that is to be updated. The Load method expects an array of objects

and a LoadOption enumeration value that has one of the following values:

■ OverwriteRow Overwrites the original DataRowVersion and the current

DataRowVersion and changes the RowState to Unchanged. New rows also have the

RowState of Unchanged.

■ PreserveCurrentValues (default) Overwrites the original DataRowVersion, but

does not modify the current DataRowVersion. New rows have the RowState of

Unchanged as well.

234

Chapter 4 Using ADO.NET and XML with ASP.NET

■ UpdateCurrentValues Overwrites the current DataRowVersion, but does not mod

ify the original DataRowVersion. New rows have the RowState of Added. Rows that

had a RowState of Unchanged have the RowState of Unchanged if the current

DataRowVersion is the same as the original DataRowVersion, but if they are differ

ent, the RowState is Modified.

The following code snippet demonstrates the methods of creating and adding data to

the employee DataTable:

'VB

'Add New DataRow by creating the DataRow first

Dim newemployee As DataRow = employee.NewRow()

newemployee("Eid") = "123456789A"

newemployee("FirstName") = "Nancy"

newemployee("LastName") = "Davolio"

newemployee("Salary") = 10.0

employee.Rows.Add(newemployee)

'Add New DataRow by simply adding the values

employee.Rows.Add("987654321X", "Andrew", "Fuller", 15.0)

'Load DataRow, replacing existing contents, if existing

employee.LoadDataRow(_

New Object() {"987654321X", "Janet", "Leverling", 20.0}, _

LoadOption.OverwriteChanges)

//C#

//Add New DataRow by creating the DataRow first

DataRow newemployee = employee.NewRow();

newemployee["Eid"] = "123456789A";

newemployee["FirstName"] = "Nancy";

newemployee["LastName"] = "Davolio";

newemployee["Salary"] = 10.00m;

employee.Rows.Add(newemployee);

//Add New DataRow by simply adding the values

employee.Rows.Add("987654321X", "Andrew", "Fuller", 15.00m);

//Load DataRow, replacing existing contents, if existing

employee.LoadDataRow(

new object[] { "987654321X", "Janet", "Leverling", 20.00m },

LoadOption.OverwriteChanges);

This code adds new DataRow objects to the Employee DataTable. The first example

explicitly creates a new DataRow using the NewRow method on the Employee Data-

Table. The next example adds a new DataRow by simply passing the values into the

employee.Rows.Add method. Remember that nothing has been permanently stored to

a database. We will cover that later in this chapter.

Lesson 1: Using the ADO.NET Disconnected Classes

235

Binding to the DataTable A DataTable object is bound to any of the data-bound con

trols by assigning it to the DataSource property of the data-bound control and execut

ing the DataBind method of the control to render the data as follows:

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

'add grid to form

Dim gv As New GridView()

gv.Style.Add("position", "absolute")

gv.Style.Add("left", "275px")

gv.Style.Add("top", "20px")

gv.EnableViewState = false

form1.Controls.Add(gv)

 'get the table and display

gv.DataSource = GetDataTable()

gv.DataBind()

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

//add grid to form

GridView gv = new GridView();

gv.Style.Add("position", "absolute");

gv.Style.Add("left", "275px");

gv.Style.Add("top", "20px");

gv.EnableViewState = false;

form1.Controls.Add(gv);

//get the table and display

gv.DataSource = GetDataTable();

gv.DataBind();

}

This rendered DataTable is shown in Figure 4-2.

Figure 4-2 The employee DataTable object is bound to the GridView control.

236

Chapter 4 Using ADO.NET and XML with ASP.NET

If you are working with any controls that inherit from ListControl, such as the ListBox,

you also need to set the DataTextField and DataValueField properties.

Using DataRowState with the DataRow Object The DataRow has a RowState property

that can be viewed and filtered at any time and can be any of the following DataRow-

State enumeration values:

■ Detached DataRow is created but not added to a DataTable.

■ Added DataRow is added to a DataTable.

■ Unchanged DataRow has not changed since the last call to the AcceptChanges

method. The DataRow changes to this state when the AcceptChanges method is

called.

■ Modified DataRow has been modified since the last time the AcceptChanges

method was called.

■ Deleted DataRow is deleted using the Delete method of the DataRow.

Figure 4-3 shows the RowState transitions at different times in the DataRow object’s

life.

Create a DataRow RowState = Detached

Add DataRow to DataTable RowState = Added

Set Price field to 123.45 RowState = Added

RejectChanges (row data cleared) RowState = Detached

Add DataRow back to DataTable RowState = Added

AcceptChanges RowState = Unchanged

Change Price field to 234.56 RowState = Modified

AcceptChanges RowState = Unchanged

Change Price field to 345.67 RowState = Modified

RejectChanges (back to 234.56) RowState = Unchanged

Delete RowState = Deleted

RejectChanges RowState = Unchanged

Figure 4-3 The RowState changes during the lifetime of a DataRow object.

Lesson 1: Using the ADO.NET Disconnected Classes

237

Notice that, after the Price is assigned a value of 123.45, the RowState does not change

to Modified. The RowState is still Added because RowState is an indicator of an action

required to send an update of this data to the database. The fact that 123.45 was

placed into the Price is not as important as the fact that a DataRow needs to be added

to the database.

Holding Multiple Copies of Data with the DataRowVersion The DataRow can hold up

to three versions, or copies, of the data: Original, Current, and Proposed. When the

DataRow is created, it contains a single copy of the data, which is the Current version.

When the DataRow is placed into edit mode by executing its BeginEdit method,

changes to the data are placed in a second version of the data, called the Proposed ver

sion. When the EndEdit method is executed, the Current version becomes the Origi

nal version, the Proposed version becomes the Current version, and the Proposed

version no longer exists. After EndEdit has completed its execution, there are two ver

sions of the DataRow data: Original and Current. If the BeginEdit method is called

again, the Current version of the data is copied to a third version of the data, which is

the Proposed version. Calling EndEdit again causes the Proposed version to become

the Current version and the Proposed version to no longer exist.

When you retrieve data from the DataRow, the DataRowVersion you want to retrieve

can also be specified as follows:

■ Current This is the current value of the DataRow, even after changes have been

made. This version exists in all situations, except when the RowState property is

Deleted. If you attempt to retrieve the Current version and the RowState is Deleted,

an exception is thrown.

■ Default If the RowState is Added or Modified, the default version is Current. If the

RowState is Deleted, an exception is thrown. If the BeginEdit method has been

executed, the default version is Proposed.

■ Original This is the value at the time the last AcceptChanges method was exe

cuted. If the AcceptChanges method was never executed, the Original version is

the value that was originally loaded into the DataRow. Note that this version is

not populated until the RowState becomes Modified, Unchanged, or Deleted. If the

RowState is Deleted, this information is still retrievable. If the RowState is Added,

a VersionNotFoundException is thrown.

238

Chapter 4 Using ADO.NET and XML with ASP.NET

■ Proposed This is the value at the time of editing the DataRow. If the RowState is

Deleted, an exception is thrown. If the BeginEdit method has not been explicitly

executed, or if BeginEdit was implicitly executed via editing a detached DataRow

(an orphaned DataRow object that has not been added to a DataTable object), a

VersionNotFoundException is thrown.

You can also query the HasVersion method on the DataRow object to test for the exist

ence of a particular DataRowVersion. You can use this method to test for the existence

of a DataRowVersion before attempting to retrieve a version that does not exist. The fol

lowing code snippet demonstrates how to retrieve a string using the RowState and the

DataRowVersion:

'VB

Private Function GetDataRowInfo(_

 ByVal row As DataRow, ByVal columnName As String) _

 As String

Dim retVal As String = String.Format(_

 "RowState: {0}
", row.RowState)

Dim versionString As String

For Each versionString In [Enum].GetNames(_

 GetType(DataRowVersion))

 Dim version As DataRowVersion = _

 CType([Enum].Parse(GetType(DataRowVersion), _

 versionString), DataRowVersion)

 If (row.HasVersion(version)) Then

 retVal += String.Format(_

"Version: {0} Value: {1}
", _

version, row(columnName, version))

 Else

 retVal += String.Format(_

"Version: {0} does not exist.
", _

version)

 End If

Next

Return retVal

End Function

//C#

private string GetDataRowInfo(DataRow row, string columnName)

{

string retVal = string.Format(

 "RowState: {0}
",

 row.RowState);

foreach (string versionString in

 Enum.GetNames(typeof(DataRowVersion)))

{

 DataRowVersion version = (

 DataRowVersion)Enum.Parse(

Lesson 1: Using the ADO.NET Disconnected Classes

239

}

typeof(DataRowVersion), versionString);

 if (row.HasVersion(version))

{

 retVal += string.Format(

"Version: {0} Value: {1}
",

version, row[columnName, version]);

}

 else

{

 retVal += string.Format(

"Version: {0} does not exist.
",

version);

}

}

return retVal;

Resetting the RowState with AcceptChanges and RejectChanges The AcceptChanges

method is used to reset the DataRow state to Unchanged. This method exists on the

DataRow, DataTable, and DataSet objects. (We cover DataSet later in this chapter.)

After data has been loaded from the database, the RowState property of the loaded

rows is set to Added. Calling AcceptChanges on the DataTable resets the RowState of all

of the DataRow objects to Unchanged. If you modify the DataRow objects, their Row-

State changes to Modified. When you are ready to save the data, you can easily query

the DataTable object for its changes by using the GetChanges method on the DataTable

object, which returns a DataTable that is populated only with the DataRow objects

that have changed since the last time that AcceptChanges was executed. Only the

changes need to be sent to the data store.

After the changes have been successfully sent to the data store, change the state of the

DataRow objects to Unchanged by calling the AcceptChanges method, which indicates

that the DataRow objects are synchronized with the data store. Note that executing

the AcceptChanges method also causes the DataRow object’s Current DataRowVersion

to be copied to the DataRow object’s Original version. Consider the following code

snippet:

'VB

Protected Sub Button2_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

'add label to form

Dim lbl As New Label()

lbl.Style.Add("position", "absolute")

240

Chapter 4 Using ADO.NET and XML with ASP.NET

lbl.Style.Add("left", "275px")

lbl.Style.Add("top", "20px")

lbl.EnableViewState = false

form1.Controls.Add(lbl)

'get the first row to play with

Dim dr As DataRow = GetDataTable().Rows(0)

'clear the rowstate

dr.AcceptChanges()

'make change in a single statement

dr("FirstName") = "Marie"

'start making changes that may span multiple statements

dr.BeginEdit()

dr("FirstName") = "Marge"

lbl.Text = GetDataRowInfo(dr, "FirstName")

dr.EndEdit()

End Sub

//C#

protected void Button2_Click(object sender, EventArgs e)

{

//add label to form

Label lbl = new Label();

lbl.Style.Add("position", "absolute");

lbl.Style.Add("left", "275px");

lbl.Style.Add("top", "20px");

lbl.EnableViewState = false;

form1.Controls.Add(lbl);

//get the first row to play with

DataRow dr = GetDataTable().Rows[0];

//clear the rowstate

dr.AcceptChanges();

//make change in a single statement

dr["FirstName"] = "Marie";

//start making changes that may span multiple statements

dr.BeginEdit();

dr["FirstName"] = "Marge";

lbl.Text = GetDataRowInfo(dr, "FirstName");

dr.EndEdit();

}

This code starts by adding a Label control to the Web page that holds the results of

this test. Next, the first DataRow object in the employee DataTable is retrieved. The

DataRow has an initial RowState of Added, and the AcceptChanges method clears the

RowState to Unchanged. Next, the FirstName is modified in a single statement, which

causes the RowState to become Modified. At this time, the Current version contains

the modified data and the Original version contains the data values that exist after

the AcceptChanges method is executed. Next, the BeginEdit method is executed to

place the DataRow in an edit mode and the FirstName is changed again. At this time,

Lesson 1: Using the ADO.NET Disconnected Classes

241

the Proposed version contains the current data and executing the GetDataRowInfo

method displays the results shown in Figure 4-4.

Figure 4-4 The DataRow information after making changes.

The RejectChanges method is used to roll back the DataRow to the point in time when

you last called the AcceptChanges method. The AcceptChanges method overwrites the

Original DataRowVersion, which means that you cannot roll back to a point in time

that is earlier than the last time AcceptChanges was called.

Explicitly Changing RowState with the SetAdded and SetModified Methods The Set-

Added and SetModified methods on the DataRow allow you to explicitly set the Row-

State. This is useful when you want to force a DataRow to be stored in a data store that

is different from the data store from which the DataRow was originally loaded.

Deleting and Undeleting the DataRow The Delete method on the DataRow is used to

set the RowState of the DataRow to Deleted. A DataRow object that has a RowState of

Deleted indicates that the row needs to be deleted from the data store.

There are many scenarios where you need to undelete a DataRow. The DataRow object

doesn’t have an undelete method, but you can use the RejectChanges method to per

form an undelete that may satisfy some scenarios. The problem is that executing the

RejectChanges method copies the Original DataRowVersion to the Current DataRow-

Version, which effectively restores the DataRow object to its state at the time the last

AcceptChanges method was executed. This means that any changes that were made to

the data prior to deleting are lost.

242

Chapter 4 Using ADO.NET and XML with ASP.NET

Copying and Cloning the DataTable

You often need to create a full copy of a DataTable in your application, possibly to pass

it to another application, or to use as a scratch pad for operations that may be thrown

out later. For example, you may want to assign a DataTable object to a GridView con

trol to allow a user to edit the data, but you also may want to provide a cancel button

that aborts all changes on the Web page. A simple way to implement this functionality

is to create a copy of your DataTable object and use the copy for editing. If the user

clicks the cancel button, the DataTable copy is thrown out. If the user decides to keep

the changes, you can replace the original DataTable object with the edited copy.

To create a copy of a DataTable object, use the Copy method on the DataTable, which

copies the DataTable object’s schema and data. The following code snippet shows

how to invoke the Copy method:

'VB

Dim copy as DataTable = employee.Copy()

//C#

DataTable copy = employee.Copy();

You often require a copy of the DataTable schema without the data. You can accom

plish this by invoking the Clone method on the DataTable. Use this method when an

empty copy of the DataTable is required and to which DataRow objects will be added

at a later time. The following code shows the Clone method:

'VB

Dim clone as DataTable = employee.Clone()

//C#

DataTable clone = employee.Clone();

Importing DataRow Objects into a DataTable

The ImportRow method on the DataTable object copies a DataRow from a DataTable

that has the same schema. The ImportRow method also imports Current and Original

version data. If you attempt to import a DataRow that has a primary key value that

already exists in the DataTable object, a ConstraintException is thrown. The following

code snippet shows the process for cloning the DataTable and then copying a single

DataRow to the cloned copy:

'VB

Dim clone as DataTable = employee.Clone()

clone.ImportRow(employee.Rows(0))

//C#

DataTable clone = employee.Clone();

clone.ImportRow(employee.Rows[0]);

Lesson 1: Using the ADO.NET Disconnected Classes

243

Using the DataTable with XML Data

You can use the WriteXml method of a DataTable to write the contents of the Data-

Table to an XML file or stream. This method should be used with the Server.MapPath

method to convert a simple filename to the Web site path, as shown in the following

code snippet:

'VB

Protected Sub Button5_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button5.Click

Dim employee As DataTable = GetDataTable()

employee.WriteXml(Server.MapPath("employee.xml"))

Response.Redirect("employee.xml")

End Sub

//C#

protected void Button5_Click(object sender, EventArgs e)

{

DataTable employee = GetDataTable();

employee.WriteXml(Server.MapPath("employee.xml"));

Response.Redirect("employee.xml");

}

MORE INFO Changes to the DataTable

The following Microsoft link provides more information about the changes to the DataTable in

ADO.NET 2.0: http://msdn.microsoft.com/msdnmag/issues/05/11/DataPoints.

When this method is executed, the employee.xml file is produced, which looks like

the following:

<?xml version="1.0" standalone="yes"?>

<DocumentElement>

 <Employee>

 <Eid>123456789A</Eid>

 <FirstName>Nancy</FirstName>

 <LastName>Davolio</LastName>

 <Salary>10</Salary>

 <LastName_x0020_and_x0020_FirstName>

Davolio, Nancy

 </LastName_x0020_and_x0020_FirstName>

 </Employee>

 <Employee>

 <Eid>987654321X</Eid>

 <FirstName>Janet</FirstName>

 <LastName>Leverling</LastName>

http://msdn.microsoft.com/msdnmag/issues/05/11/DataPoints
http://msdn.microsoft.com/msdnmag/issues/05/11/DataPoints

244

Chapter 4 Using ADO.NET and XML with ASP.NET

 <Salary>20</Salary>

 <LastName_x0020_and_x0020_FirstName>

Leverling, Janet

 </LastName_x0020_and_x0020_FirstName>

 </Employee>

</DocumentElement>

This example uses DocumentElement as the root element and uses repeating

Employee elements for each DataRow. The data for each DataRow is nested as an ele

ment within each Employee element. Also notice that an XML element name cannot

have spaces, so LastName and FirstName are automatically encoded (converted) to

LastName_x0020_and_x0020_FirstName.

You can fine-tune the XML output by providing an XML schema or by setting proper

ties on the DataTable and its objects. To change the name of the repeating element for

the DataRow objects from Employee to Person, you can change the DataTable object’s

TableName. The DataColumn has a ColumnMapping property you can use to configure

the output of each column by assigning one of the following MappingType enumera

tion values:

■ Attribute Places the column data into an XML attribute.

■ Element Is the default. Places the column data into an XML element.

■ Hidden Is the column data that is not sent to the XML file.

■ SimpleContent Is the column data that is stored as text within the row’s element

tags and does not include element tags for the column.

To change the Eid, LastName, FirstName, and Salary to XML attributes, you can set each

DataColumn object’s ColumnMapping property to MappingType.Attribute. The LastName

and FirstName column is an expression column, so its data does not need to be stored.

Therefore, its ColumnMapping property can be set to MappingType.Hidden. The follow

ing snippets show the necessary code and the resulting XML file contents:

'VB

Protected Sub Button6_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button6.Click

 Dim employee As DataTable = GetDataTable()

 employee.TableName = "Person"

 employee.Columns("Eid").ColumnMapping = MappingType.Attribute

 employee.Columns("FirstName").ColumnMapping = MappingType.Attribute

 employee.Columns("LastName").ColumnMapping = MappingType.Attribute

 employee.Columns("Salary").ColumnMapping = MappingType.Attribute

 employee.Columns("LastName and FirstName").ColumnMapping = _

MappingType.Hidden

Lesson 1: Using the ADO.NET Disconnected Classes

 employee.WriteXml(Server.MapPath("Person.xml"))

 Response.Redirect("Person.xml")

End Sub

//C#

protected void Button6_Click(object sender, EventArgs e)

{

 DataTable employee = GetDataTable();

 employee.TableName = "Person";

 employee.Columns["Eid"].ColumnMapping = MappingType.Attribute;

 employee.Columns["FirstName"].ColumnMapping = MappingType.Attribute;

 employee.Columns["LastName"].ColumnMapping = MappingType.Attribute;

 employee.Columns["Salary"].ColumnMapping = MappingType.Attribute;

 employee.Columns["LastName and FirstName"].ColumnMapping =

MappingType.Hidden;

 employee.WriteXml(Server.MapPath("Person.xml"));

 Response.Redirect("Person.xml");

}

XML

<?xml version="1.0" standalone="yes"?>

<DocumentElement>

<Person Eid="123456789A" FirstName="Nancy" LastName="Davolio" Salary="10" />

<Person Eid="987654321X" FirstName="Janet" LastName="Leverling" Salary="20" />

</DocumentElement>

245

Although the resulting XML file is compact, the data types aren’t saved, so all data is

considered to be string data. You can use the XmlWriteMode.WriteSchema enumera

tion value to store the XML schema with the data, as shown here:

'VB

Protected Sub Button7_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button7.Click

 Dim employee As DataTable = GetDataTable()

 employee.TableName = "Person"

 employee.Columns("Eid").ColumnMapping = MappingType.Attribute

 employee.Columns("FirstName").ColumnMapping = MappingType.Attribute

 employee.Columns("LastName").ColumnMapping = MappingType.Attribute

 employee.Columns("Salary").ColumnMapping = MappingType.Attribute

 employee.Columns("LastName and FirstName").ColumnMapping = _

MappingType.Hidden

 employee.WriteXml(Server.MapPath("PersonWithSchema.xml"), _

XmlWriteMode.WriteSchema)

 Response.Redirect("PersonWithSchema.xml")

End Sub

//C#

protected void Button7_Click(object sender, EventArgs e)

{

 DataTable employee = GetDataTable();

 employee.TableName = "Person";

 employee.Columns["Eid"].ColumnMapping = MappingType.Attribute;

246

Chapter 4 Using ADO.NET and XML with ASP.NET

 employee.Columns["FirstName"].ColumnMapping = MappingType.Attribute;

 employee.Columns["LastName"].ColumnMapping = MappingType.Attribute;

 employee.Columns["Salary"].ColumnMapping = MappingType.Attribute;

 employee.Columns["LastName and FirstName"].ColumnMapping =

MappingType.Hidden;

 employee.WriteXml(Server.MapPath("PersonWithSchema.xml"),

XmlWriteMode.WriteSchema); Response.Redirect("PersonWithSchema.xml");

}

XML

<?xml version="1.0" standalone="yes"?>

<NewDataSet>

 <xs:schema id="NewDataSet" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xs:element name="NewDataSet" msdata:IsDataSet="true"

msdata:MainDataTable="Person" msdata:UseCurrentLocale="true">

 <xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Person">

<xs:complexType>

 <xs:attribute name="Eid" msdata:Caption="EID" use="required">

<xs:simpleType>

 <xs:restriction base="xs:string">

<xs:maxLength value="10" />

 </xs:restriction>

</xs:simpleType>

 </xs:attribute>

 <xs:attribute name="FirstName" use="required">

<xs:simpleType>

 <xs:restriction base="xs:string">

<xs:maxLength value="35" />

 </xs:restriction>

</xs:simpleType>

 </xs:attribute>

 <xs:attribute name="LastName" type="xs:string" use="required" />

 <xs:attribute name="Salary" type="xs:decimal" default="0.00" />

 <xs:attribute name="LastName_x0020_and_x0020_FirstName"

 msdata:ReadOnly="true"

 msdata:Expression="lastName + ', ' + firstName"

 use="prohibited">

<xs:simpleType>

 <xs:restriction base="xs:string">

<xs:maxLength value="70" />

 </xs:restriction>

</xs:simpleType>

 </xs:attribute>

</xs:complexType>

 </xs:element>

</xs:choice>

 </xs:complexType>

 <xs:unique name="Constraint1" msdata:PrimaryKey="true">

Lesson 1: Using the ADO.NET Disconnected Classes

<xs:selector xpath=".//Person" />

<xs:field xpath="@Eid" />

 </xs:unique>

 </xs:element>

 </xs:schema>

 <Person Eid="123456789A" FirstName="Nancy" LastName="Davolio"

 Salary="10.00" />

 <Person Eid="987654321X" FirstName="Janet" LastName="Leverling"

 Salary="20.00" />

</NewDataSet>

247

With the XML Schema included in the file, the data types are defined. Notice that the

XML schema also includes the maximum length settings for Eid and FirstName. A

DataTable can be loaded with this XML file, and the resulting DataTable is the same as

the DataTable that was saved to the file. The following code snippet reads the XML file

into a new DataTable object:

'VB

Protected Sub Button8_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button8.Click

'add grid to form

Dim gv As New GridView()

gv.Style.Add("position", "absolute")

gv.Style.Add("left", "275px")

gv.Style.Add("top", "20px")

gv.EnableViewState = False

form1.Controls.Add(gv)

'get the table and display

Dim xmlTable as New DataTable()

xmlTable.ReadXml(Server.MapPath("PersonWithSchema.xml"))

gv.DataSource = xmlTable

gv.DataBind()

End Sub

//C#

protected void Button8_Click(object sender, EventArgs e)

{

//add grid to form

GridView gv = new GridView();

gv.Style.Add("position", "absolute");

gv.Style.Add("left", "275px");

gv.Style.Add("top", "20px");

gv.EnableViewState = false;

form1.Controls.Add(gv);

//get the table and display

DataTable xmlTable = new DataTable();

xmlTable.ReadXml(Server.MapPath("PersonWithSchema.xml"));

gv.DataSource = xmlTable;

gv.DataBind();

}

248

Chapter 4 Using ADO.NET and XML with ASP.NET

Although the data for the LastName and FirstName column was not saved, the col

umn data is populated because this column is derived and the schema contains the

expression to re-create this column data.

Opening a DataView Window in a DataTable

The DataView object provides a window into a DataTable that can be sorted and fil

tered using the Sort, RowFilter, and RowStateFilter properties. A DataTable can have

many DataView objects assigned to it, allowing the data to be viewed in many different

ways without requiring the data to be reread from the database. The DataView object

also contains the AllowDelete, AllowEdit, and AllowNew properties to constrain user

input as needed.

If you look at the DataView object’s internal structure, you will find that it is essen

tially an index. You can provide a sort definition to sort the index in a certain order,

and you can provide a filter to filter the index entries.

Ordering Data Using the Sort Property The Sort property requires a sort expression.

The default order for the sort is ascending, but you can specify ASC or DESC with

a comma-separated list of columns to be sorted. In the following code snippet, the

employee DataTable is retrieved, additional rows are added, and a DataView is cre

ated on the employee DataTable with a compound sort on the LastName column

and the FirstName column in ascending order and on the Salary column in

descending order.

'VB

Protected Sub Button9_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button9.Click

 'add grid to form

 Dim gv As New GridView()

 gv.Style.Add("position", "absolute")

 gv.Style.Add("left", "275px")

 gv.Style.Add("top", "20px")

 gv.EnableViewState = False

 form1.Controls.Add(gv)

 'get datatable

 Dim employee As DataTable = GetDataTable()

 'Add New DataRow by adding the values

 employee.Rows.Add("ABC345DEF1", "Thomas", "Andersen", 25.00)

 employee.Rows.Add("123ABC345D", "Sean", "Chai" , 20.00)

 employee.Rows.Add("345DEF123A", "Erik", "Andersen", 22.00)

 employee.Rows.Add("DEF123ABC3", "Nancy", "Andersen", 8.00)

 'sort and display

 Dim view As New DataView(employee)

Lesson 1: Using the ADO.NET Disconnected Classes

 view.Sort = "LastName ASC, FirstName ASC, Salary DESC"

 gv.DataSource = view

 gv.DataBind()

End Sub

//C#

protected void Button9_Click(object sender, EventArgs e)

{

 //add grid to form

 GridView gv = new GridView();

 gv.Style.Add("position", "absolute");

 gv.Style.Add("left", "275px");

 gv.Style.Add("top", "20px");

 gv.EnableViewState = false;

 form1.Controls.Add(gv);

 //get datatable

 DataTable employee = GetDataTable();

 //Add New DataRow by adding the values

 employee.Rows.Add("ABC345DEF1", "Thomas", "Andersen", 25.00m);

 employee.Rows.Add("123ABC345D", "Sean", "Chai" , 20.00m);

 employee.Rows.Add("345DEF123A", "Erik", "Andersen", 22.00m);

 employee.Rows.Add("DEF123ABC3", "Nancy", "Andersen", 8.00m);

 //sort and display

 DataView view = new DataView(employee);

 view.Sort = "LastName ASC, FirstName ASC, Salary DESC";

 gv.DataSource = view;

 gv.DataBind();

}

Figure 4-5 shows the sorted DataView when the Web page is run.

Figure 4-5 The sorted employee DataView object.

249

250

Chapter 4 Using ADO.NET and XML with ASP.NET

Narrowing the Search with the RowFilter and RowStateFilter Properties The DataView

filters comprise a RowFilter and a RowStateFilter. The RowFilter is set to a SQL "WHERE"

clause without the word "WHERE." The following code shows a filter on the LastName

column for employees whose names begin with the letter A and on the Salary column

for employees whose salaries are greater than 15.

'VB

view.RowFilter = "LastName like 'A%' and Salary > 15"

//C#

view.RowFilter = "LastName like 'A%' and Salary > 15";

The RowStateFilter provides a filter based on the DataRow object’s RowState property.

This filter provides an extremely easy way to retrieve specific version information

within the DataTable using one of the DataViewRowState enumeration values, which

are as follows:

■ Added Retrieves the Current DataRowVersion of DataRow objects that have a

RowState of Added.

■ CurrentRows Retrieves all DataRow objects that have a Current DataRowVersion.

■ Deleted Retrieves the Original DataRowVersion of DataRow objects that have a

RowState of Deleted.

■ ModifiedCurrent Retrieves the Current DataRowVersion of DataRow objects that

have a RowState of Modified.

■ ModifiedOriginal Retrieves the Original DataRowVersion of DataRow objects that

have a RowState of Modified.

■ None Clears the RowStateFilter property.

■ OriginalRows Retrieves the DataRow objects that have an Original DataRow-

Version.

■ Unchanged Retrieves DataRow objects that have a RowState of Unchanged.

Using a DataSet Object

The DataSet is a memory-based relational representation of data and is the primary dis

connected data object. The DataSet contains a collection of DataTable and DataRelation

objects, as shown in Figure 4-6. The DataTable objects can contain unique and for

eign key constraints to enforce data integrity. The DataSet also provides methods for

Lesson 1: Using the ADO.NET Disconnected Classes

251

cloning the DataSet schema, copying the DataSet, merging with other DataSet

objects, and retrieving changes from the DataSet.

DataSet

DataTables Collection

Company

Id

CompanyName

Employee

Id

coId

LastName

FirstName

Salary

Company_Employee

DataRelations Collection

Figure 4-6 The DataSet object contains a collection of DataTable and DataRelation objects.

You can create the DataSet schema programmatically or by providing an XML schema

definition. The following code demonstrates the creation of a simple DataSet contain

ing a DataTable for companies and a DataTable for employees. The two DataTable

objects are joined using a DataRelation named Company_Employee. (The DataRela

tion is discussed in more detail in the next section of this chapter.)

'VB

Private Function GetDataSet() As DataSet

 Dim companyData As New DataSet("CompanyList")

 Dim company As DataTable = companyData.Tables.Add("company")

 company.Columns.Add("Id", GetType(Guid))

 company.Columns.Add("CompanyName", GetType(String))

 company.PrimaryKey = New DataColumn() {company.Columns("Id")}

 Dim employee As DataTable = companyData.Tables.Add("employee")

 employee.Columns.Add("Id", GetType(Guid))

 employee.Columns.Add("companyId", GetType(Guid))

 employee.Columns.Add("LastName", GetType(String))

 employee.Columns.Add("FirstName", GetType(String))

 employee.Columns.Add("Salary", GetType(Decimal))

 employee.PrimaryKey = New DataColumn() {employee.Columns("Id")}

 companyData.Relations.Add(_

 "Company_Employee", _

 8

252

Chapter 4 Using ADO.NET and XML with ASP.NET

 company.Columns("Id"), _

 employee.Columns("CompanyId"))

 Return companyData

End Function

//C#

private DataSet GetDataSet()

{

 DataSet companyData = new DataSet("CompanyList");

 DataTable company = companyData.Tables.Add("company");

 company.Columns.Add("Id", typeof(Guid));

 company.Columns.Add("CompanyName", typeof(string));

 company.PrimaryKey = new DataColumn[] { company.Columns["Id"] };

 DataTable employee = companyData.Tables.Add("employee");

 employee.Columns.Add("Id", typeof(Guid));

 employee.Columns.Add("companyId", typeof(Guid));

 employee.Columns.Add("LastName", typeof(string));

 employee.Columns.Add("FirstName", typeof(string));

 employee.Columns.Add("Salary", typeof(decimal));

 employee.PrimaryKey = new DataColumn[] { employee.Columns["Id"] };

 companyData.Relations.Add(

 "Company_Employee",

 company.Columns["Id"],

 employee.Columns["CompanyId"]);

 return companyData;

}

After the DataSet is created, the DataTable objects are populated with sample data, as

shown in the following code sample. This code populates the Id columns by creating

a new globally unique identifier. After a company is created and added to the com

pany DataTable, the employee names for that company are created and added.

'VB

Public Sub PopulateDataSet(ByVal ds As DataSet)

 Dim company As DataTable = ds.Tables("Company")

 Dim employee As DataTable = ds.Tables("Employee")

 Dim coId, empId As Guid

 coId = Guid.NewGuid()

 company.Rows.Add(coId, "Northwind Traders")

 empId = Guid.NewGuid()

 employee.Rows.Add(empId, coId, "JoeLast", "JoeFirst", 40.00)

 empId = Guid.NewGuid()

 employee.Rows.Add(empId, coId, "MaryLast", "MaryFirst", 70.00)

 empId = Guid.NewGuid()

Lesson 1: Using the ADO.NET Disconnected Classes

 employee.Rows.Add(empId, coId, "SamLast", "SamFirst", 12.00)

 coId = Guid.NewGuid()

 company.Rows.Add(coId, "Contoso")

 empId = Guid.NewGuid()

 employee.Rows.Add(empId, coId, "SueLast", "SueFirst", 20.00)

 empId = Guid.NewGuid()

 employee.Rows.Add(empId, coId, "TomLast", "TomFirst", 68.00)

 empId = Guid.NewGuid()

 employee.Rows.Add(empId, coId, "MikeLast", "MikeFirst", 18.99)

End Sub

//C#

private void PopulateDataSet(DataSet ds)

{

 DataTable company = ds.Tables["Company"];

 DataTable employee = ds.Tables["Employee"];

 Guid coId, empId;

 coId = Guid.NewGuid();

 company.Rows.Add(coId, "Northwind Traders");

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "JoeLast", "JoeFirst", 40.00);

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "MaryLast", "MaryFirst", 70.00);

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "SamLast", "SamFirst", 12.00);

 coId = Guid.NewGuid();

 company.Rows.Add(coId, "Contoso");

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "SueLast", "SueFirst", 20.00);

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "TomLast", "TomFirst", 68.00);

 empId = Guid.NewGuid();

 employee.Rows.Add(empId, coId, "MikeLast", "MikeFirst", 18.99);

}

Using the Globally Unique Identifier (GUID) as a Primary Key

253

The previous code sample creates and populates a DataSet. Notice the use of the Guid

data type for the Id columns. Although this option is not mandatory, you should con

sider implementing this option, especially when working with disconnected data.

This can help you deal with the following issues:

■ If you use an auto-number Id column and if many people are creating new

DataRow objects, it will be difficult for you to merge data later because there may

be many duplicate keys.

254

Chapter 4 Using ADO.NET and XML with ASP.NET

■ The Guid data type is a ―surrogate‖ key, meaning that its only purpose is to

define uniqueness of the row and aid in connecting multiple tables together via

relationships. This means that there is no reason for a user to see and change this

value, which simplifies maintenance of the DataSet. If you allow the user to

change the primary key on a row, you have to propogate the change down to all

of the related tables. For example, changing the CompanyId value requires the

update of the Company Id value in the Employee table.

■ The use of the Guid can simplify the joining of tables, which is better than the

scenarios where you use compound keys that are based on the actual data. Com

pound keys typically result in smaller data footprints because the key is based on

actual data, whereas joining tables is usually more difficult because compound

joins are required. Remember that if you are using compound keys that are

based on the actual data, you inevitably need to deal with recursive updates.

GetLabel and GetGridView Methods

The sample code in this chapter makes calls to the GetLabel and GetGridView

methods. Instead of placing a GridView or Label control on the form to display

the sample code output, these methods are used to dynamically create the

proper output control as needed, which simplifies the sample code. The code for

these methods is as follows.

'VB

Private Function GetLabel(ByVal left As Integer, _

 ByVal top As Integer) As Label

Dim lbl As New Label()

lbl.Style.Add("position", "absolute")

lbl.Style.Add("left", left.ToString() + "px")

lbl.Style.Add("top", top.ToString() + "px")

lbl.EnableViewState = False

form1.Controls.Add(lbl)

Return lbl

End Function

Private Function GetGridView(ByVal left As Integer, _

 ByVal top As Integer) As GridView

Dim gv As New GridView()

gv.Style.Add("position", "absolute")

gv.Style.Add("left", left.ToString() + "px")

gv.Style.Add("top", top.ToString() + "px")

gv.EnableViewState = False

form1.Controls.Add(gv)

Return gv

End Function

//C#

Lesson 1: Using the ADO.NET Disconnected Classes

255

private Label GetLabel(int left, int top)

{

Label lbl = new Label();

lbl.Style.Add("position", "absolute");

lbl.Style.Add("left", left.ToString() + "px");

lbl.Style.Add("top", top.ToString() + "px");

lbl.EnableViewState = false;

form1.Controls.Add(lbl);

return lbl;

}

private GridView GetGridView(int left, int top)

{

GridView gv = new GridView();

gv.Style.Add("position", "absolute");

gv.Style.Add("left", left.ToString() + "px");

gv.Style.Add("top", top.ToString() + "px");

gv.EnableViewState = false;

form1.Controls.Add(gv);

return gv;

}

Binding to the DataSet Object

Assign the DataSet to the DataSource property of a data-bound control to display the

contents of a DataSet. The first DataTable in the DataSet is rendered when you issue

the DataBind method on the control, but you can be more specific about the Data-

Table to use by assigning the name of the DataTable to the DataMember property of

the data-bound control. The following code snippet uses the GetGridView, which

dynamically creates a GridView and adds it to the form. This method is called to create

a GridView for the Company table and another GridView for the Employee table. The

code sample retrieves the populated DataSet, retrieves the populated DataSet, and

binds the DataSet to the GridView controls:

' VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 'add grids to form

 Dim gvCompany As GridView = GetGridView(275, 20)

 Dim gvEmployee As GridView = GetGridView(275, 125)

 'get the dataset and display

 Dim companyList As DataSet = GetDataSet()

 PopulateDataSet(companyList)

 'display

256

Chapter 4 Using ADO.NET and XML with ASP.NET

 gvCompany.DataSource = companyList

 gvCompany.DataMember = "Company"

 gvEmployee.DataSource = companyList

 gvEmployee.DataMember = "Employee"

 gvCompany.DataBind()

 gvEmployee.DataBind()

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

 //add grids to form

 GridView gvCompany = GetGridView(275, 20);

 GridView gvEmployee = GetGridView(275, 125);

 //get the dataset and populate

 DataSet companyList = GetDataSet();

 PopulateDataSet(companyList);

 //display

 gvCompany.DataSource = companyList;

 gvCompany.DataMember = "Company";

 gvEmployee.DataSource = companyList;

 gvEmployee.DataMember = "Employee";

 gvCompany.DataBind();

 gvEmployee.DataBind();

}

Figure 4-7 shows the result after the Web page is displayed and the button is clicked.

Figure 4-7 The populated DataSet, bound to two GridView controls.

Using Typed DataSets

Lesson 1: Using the ADO.NET Disconnected Classes

257

After the DataSet object’s schema is created, you can access any of the DataTable

objects by using the table name (as shown in the following example) that retrieves the

Company DataTable from the saleData DataSet object:

'VB

Dim companyTable as DataTable = salesData.Tables("Company")

//C#

DataTable companyTable = salesData.Tables["Company"];

If the name of the table is misspelled, an exception is thrown, but not until runtime.

You can be notified of an error when you build your project by creating a new, special

ized DataSet class that inherits from DataSet, and by adding a property for each of the

tables. For example, a specialized DataSet class might contain a property called Com

pany that can be accessed as follows:

'VB

Dim companyTable as DataTable = vendorData.Company

//C#

DataTable companyTable = vendorData.Company;

In this example, a compile error is generated if Company is not spelled correctly.

(Keep in mind that you probably won’t misspell the Company property because Visual

Studio’s IntelliSense displays the Company property for quick selection when the line

of code is being typed.)

You can provide an XML Schema Definition (XSD) file to generate the typed DataSet

class. You can use the DataSet Editor to graphically create and modify an XSD file,

which, in turn, can be used to generate the typed DataSet class. Figure 4-8 shows the

CompanyList DataSet that is loaded into the DataSet Editor.

258

Chapter 4 Using ADO.NET and XML with ASP.NET

Figure 4-8 The DataSet template contains an XML schema definition and generates source code to

create a typed DataSet.

Navigating DataTable Objects with DataRelation Objects

The DataRelation object is used to join two DataTable objects that are in the same

DataSet, thus providing a navigable path between the two DataTable objects. The

DataRelation can be traversed from parent DataTable to child DataTable or from child

DataTable to parent DataTable. The following code example populates the Company

and Employee DataTable objects and then performs DataRelation object navigation:

'VB

Protected Sub Button2_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

 'add a label to the form

 Dim lbl As Label = GetLabel(275, 20)

 'get the dataset and populate

 Dim companyList As DataSet = GetDataSet()

 PopulateDataSet(companyList)

 'get the relationship

 Dim dr As DataRelation = companyList.Relations("Company_Employee")

 'display second company

 Dim companyParent As DataRow = companyList.Tables("company").Rows(1)

 lbl.Text = companyParent("CompanyName") + "
"

 'display employees

 For Each employeeChild As DataRow In companyParent.GetChildRows(dr)

lbl.Text += " " + employeeChild("Id").ToString() + " " _

 + employeeChild("LastName") + " " _

Lesson 1: Using the ADO.NET Disconnected Classes

 + employeeChild("FirstName") + " " _

 + String.Format("{0:C}", employeeChild("Salary")) + "
"

Next

 lbl.Text += "

"

 'display second employee

 Dim employeeParent As DataRow = companyList.Tables("employee").Rows(1)

 lbl.Text += employeeParent("Id").ToString() + " " _

 + employeeParent("LastName") + " " _

 + employeeParent("FirstName") + " " _

 + String.Format("{0:C}", employeeParent("Salary")) + "
"

 'display company

 Dim companyChild As DataRow = employeeParent.GetParentRow(dr)

 lbl.Text += " " + companyChild("CompanyName") + "
"

End Sub

//C#

protected void Button2_Click(object sender, EventArgs e)

{

 //add a label to the form

 Label lbl = GetLabel(275, 20);

 //get the dataset and populate

 DataSet companyList = GetDataSet();

 PopulateDataSet(companyList);

 //get the relationship

 DataRelation dr = companyList.Relations["Company_Employee"];

 //display second company

 DataRow companyParent = companyList.Tables["company"].Rows[1];

 lbl.Text = companyParent["CompanyName"] + "
";

 //display employees

 foreach (DataRow employeeChild in companyParent.GetChildRows(dr))

{

lbl.Text += " " + employeeChild["Id"] + " "

 + employeeChild["LastName"] + " "

 + employeeChild["FirstName"] + " "

 + string.Format("{0:C}", employeeChild["Salary"]) + "
";

}

 lbl.Text += "

";

 //display second employee

 DataRow employeeParent = companyList.Tables["employee"].Rows[1];

 lbl.Text += employeeParent["Id"] + " "

 + employeeParent["LastName"] + " "

 + employeeParent["FirstName"] + " "

 + string.Format("{0:C}", employeeParent["Salary"]) + "
";

259

260

Chapter 4 Using ADO.NET and XML with ASP.NET

 //display company

 DataRow companyChild = employeeParent.GetParentRow(dr);

 lbl.Text += " " + companyChild["CompanyName"] + "
";

}

In this code example, the previously declared Company_Employee DataRelation

navigates from parent to child and then from child to parent. The result is shown in

Figure 4-9.

Figure 4-9 The DataRelation object is used to navigate the DataTable objects from parent to child

or child to parent.

Primary and Foreign Key Constraint Creation When you create a DataRelation object

without unique and foreign key constraints, its sole purpose is to navigate between

parent and child DataTable objects. The DataRelation constructor allows for the cre

ation of a unique constraint on the parent DataTable object and a foreign key con

straint on the child DataTable object.

Cascading Updates and Deletes There are many scenarios where you want the dele

tion of a parent DataRow object to force the deletion of child DataRow objects. You can

accomplish this by setting the DeleteRule on the ForeignKeyConstraint to Cascade

(default). The following is a list of the Rule enumeration members:

■ Cascade Default. Deletes or updates the child DataRow objects when the DataRow

object is deleted or its unique key is changed.

■ None Throws an InvalidConstraintException if the parent DataRow object is

deleted or its unique key is changed.

■ SetDefault Sets the foreign key column(s) value to the default value of the Data-

Column object(s) if the parent DataRow object is deleted or its unique key is

changed.

Lesson 1: Using the ADO.NET Disconnected Classes

261

■ SetNull Sets the foreign key column(s) value to DbNull if the parent DataRow

object is deleted or its unique key is changed.

As with deleting, on some occasions, you’ll want to cascade changes to a unique key

in the parent DataRow object to the child DataRow object’s foreign key. You can set the

ChangeRule to a member of the Rule enumeration to get the appropriate behavior.

Serializing and Deserializing DataSet Objects

A DataSet can be serialized as XML or as binary data to a stream or file. The DataSet

can also be deserialized from XML or binary data from a stream or file. The serialized

data can be transferred across a network via many protocols, including HTTP. This

section looks at the various methods of transferring data.

Serializing the DataSet Object as XML You can serialize a DataSet to an XML file by

executing the DataSet object’s WriteXml method. The following code snippet uses the

populated companyList DataSet that was created earlier in this chapter and writes the

contents to an XML file. The resulting XML file contents are also shown.

'VB

Protected Sub Button4_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button4.Click

 'get dataset and populate

 'get the dataset and populate

Dim companyList As DataSet = GetDataSet()

PopulateDataSet(companyList)

'write to xml file

companyList.WriteXml(MapPath("CompanyList.xml"))

'display file

Response.Redirect("CompanyList.xml")

End Sub

//C#

protected void Button4_Click(object sender, EventArgs e)

{

//get dataset and populate

//get the dataset and populate

DataSet companyList = GetDataSet();

PopulateDataSet(companyList);

//write to xml file

companyList.WriteXml(MapPath("CompanyList.xml"));

//display file

262

Chapter 4 Using ADO.NET and XML with ASP.NET

Response.Redirect("CompanyList.xml");

}

XML

<?xml version="1.0" standalone="yes"?>

<CompanyList>

 <company>

 <Id>c2a464fb-bdce-498a-a216-fb844dfb05a5</Id>

 <CompanyName>Northwind Traders</CompanyName>

 </company>

 <company>

 <Id>aa40966c-18b7-451b-acea-237eaa5e08af</Id>

 <CompanyName>Contoso</CompanyName>

 </company>

 <employee>

 <Id>7ad2a59c-dd3a-483b-877c-b4fe0d0c9bbe</Id>

 <coId>c2a464fb-bdce-498a-a216-fb844dfb05a5</coId>

 <LastName>JoeLast</LastName>

 <FirstName>JoeFirst</FirstName>

 <Salary>40</Salary>

 </employee>

 <employee>

 <Id>343d98b0-e6aa-432d-9755-2c9501cd1ace</Id>

 <coId>c2a464fb-bdce-498a-a216-fb844dfb05a5</coId>

 <LastName>MaryLast</LastName>

 <FirstName>MaryFirst</FirstName>

 <Salary>70</Salary>

 </employee>

 <employee>

 <Id>d69af78c-8f2e-4d4f-9fd0-e0ebca6fccaa</Id>

 <coId>c2a464fb-bdce-498a-a216-fb844dfb05a5</coId>

 <LastName>SamLast</LastName>

 <FirstName>SamFirst</FirstName>

 <Salary>12</Salary>

 </employee>

 <employee>

 <Id>3cc2b9da-3087-47de-99eb-9f924f1edb0d</Id>

 <coId>aa40966c-18b7-451b-acea-237eaa5e08af</coId>

 <LastName>SueLast</LastName>

 <FirstName>SueFirst</FirstName>

 <Salary>20</Salary>

 </employee>

 <employee>

 <Id>c5804b95-c498-45ab-91b4-07fc50154f2a</Id>

 <coId>aa40966c-18b7-451b-acea-237eaa5e08af</coId>

 <LastName>TomLast</LastName>

 <FirstName>TomFirst</FirstName>

 <Salary>68</Salary>

 </employee>

 <employee>

 <Id>ad3ca5ac-eac9-4bec-88d2-5d32522abd41</Id>

 <coId>aa40966c-18b7-451b-acea-237eaa5e08af</coId>

 <LastName>MikeLast</LastName>

Lesson 1: Using the ADO.NET Disconnected Classes

 <FirstName>MikeFirst</FirstName>

 <Salary>18.99</Salary>

 </employee>

</CompanyList>

263

The XML document is well formed and its root node is called CompanyList, which you

can change by changing the DataSetName property.

Notice that the single Company DataRow object is represented in the XML file by the

single Company element, while the Employee DataRow objects are represented in the

XML file by the repeating Employee elements. The column data is represented as ele

ments within the element for the DataRow, but you can change this by changing the

ColumnMapping property of the DataColumn objects.

You can nest the Employee elements inside the Company object that has the employees

by setting the Nested property of the DataRelation object to true. In the following code

snippet, the XML format is changed substantially by nesting the data and setting all of

the DataColumn objects to Attribute. The resulting XML file is also shown.

'VB

Protected Sub Button5_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button5.Click

 'get dataset and populate

 'get the dataset and populate

Dim companyList As DataSet = GetDataSet()

PopulateDataSet(companyList)

'format xml

companyList.Relations("Company_Employee").Nested = True

For Each dt As DataTable In companyList.Tables

 For Each dc As DataColumn In dt.Columns

 dc.ColumnMapping = MappingType.Attribute

 Next

Next

'write to xml file

companyList.WriteXml(MapPath("CompanyList.xml"))

'display file

Response.Redirect("CompanyList.xml")

End Sub

//C#

protected void Button5_Click(object sender, EventArgs e)

{

//get dataset and populate

//get the dataset and populate

DataSet companyList = GetDataSet();

PopulateDataSet(companyList);

264

Chapter 4 Using ADO.NET and XML with ASP.NET

//format xml

companyList.Relations["Company_Employee"].Nested = true;

foreach (DataTable dt in companyList.Tables)

{

 foreach (DataColumn dc in dt.Columns)

{

 dc.ColumnMapping = MappingType.Attribute;

}

}

//write to xml file

companyList.WriteXml(MapPath("CompanyListNested.xml"));

//display file

Response.Redirect("CompanyListNested.xml");

}

XML

<?xml version="1.0" standalone="yes"?>

<CompanyList>

 <company Id="63cd2a1e-c578-4f21-a826-c5dfb50258b0"

 CompanyName="Northwind Traders">

 <employee Id="a2e7bbba-20ba-4b73-86b3-2d0cca4f1bbb"

 coId="63cd2a1e-c578-4f21-a826-c5dfb50258b0"

 LastName="JoeLast" FirstName="JoeFirst" Salary="40" />

 <employee Id="5cf475e8-1d97-4784-b72f-84bfbf4a8e14"

 coId="63cd2a1e-c578-4f21-a826-c5dfb50258b0"

 LastName="MaryLast" FirstName="MaryFirst" Salary="70" />

 <employee Id="55ff1a2b-8956-4ded-99a4-68610134b774"

 coId="63cd2a1e-c578-4f21-a826-c5dfb50258b0"

 LastName="SamLast" FirstName="SamFirst" Salary="12" />

 </company>

 <company Id="0adcf278-ccd3-4c3d-a78a-27aa35dc2756"

 CompanyName="Contoso">

 <employee Id="bc431c32-5397-47b6-9a16-0667be455f02"

 coId="0adcf278-ccd3-4c3d-a78a-27aa35dc2756"

 LastName="SueLast" FirstName="SueFirst" Salary="20" />

 <employee Id="5822bf9f-49c1-42dd-95e0-5bb728c5ac60"

 coId="0adcf278-ccd3-4c3d-a78a-27aa35dc2756"

 LastName="TomLast" FirstName="TomFirst" Salary="68" />

 <employee Id="1b2334a4-e339-4255-b826-c0453fda7e61"

 coId="0adcf278-ccd3-4c3d-a78a-27aa35dc2756"

 LastName="MikeLast" FirstName="MikeFirst" Salary="18.99" />

 </company>

</CompanyList>

In the example, the XML file is written, but the XML file contains no information that

describes the data types of the data. When not specified, the default data type for all

data is string. If the XML file is read into a new DataSet, all data, including DateTime

data and numeric data, is loaded as string data. Use the XmlWriteMode.WriteSchema

Lesson 1: Using the ADO.NET Disconnected Classes

265

enumeration value when saving because it stores the data type information with the

XML file, as shown in the following code snippet:

'VB

'write to xml file with schema

companyList.WriteXml(_

MapPath("CompanyListNestedWithSchema.xml"), _

XmlWriteMode.WriteSchema)

//C#

//write to xml file with schema

companyList.WriteXml(

MapPath("CompanyListNestedWithSchema.xml"),

XmlWriteMode.WriteSchema);

The XML file is substantially larger than what’s presented here. Instead of embedding

the schema in the XML file, you can create a separate XSD file to load before loading

the data. You can use the DataSet object’s WriteXmlSchema method to extract the XML

schema definition to a separate file, as shown here:

'VB

'write to xsd file

companyList.WriteXmlSchema(_

MapPath("CompanyListSchema.xsd"))

//C#

//write to xsd file

companyList.WriteXmlSchema(

MapPath("CompanyListSchema.xsd"));

Serializing a Changed DataSet Object as a DiffGram A DiffGram is an XML document

that contains all of the data from your DataSet object, including the original DataRow

object information. To save as a DiffGram, use the XmlWriteMode.DiffGram enumera

tion value when serializing a DataSet object. This snippet shows the creation of com

pany rows with changes that make it so that one is inserted, one is updated, one is

deleted, and one is unchanged. Then the DataSet is written as a DiffGram.

'VB

Protected Sub Button8_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Button8.Click

 'get the dataset and populate

 Dim companyList As DataSet = GetDataSet()

 Dim company as DataTable = companyList.Tables("company")

 company.Rows.Add(Guid.NewGuid(), "UnchangedCompany")

 company.Rows.Add(Guid.NewGuid(), "ModifiedCompany")

 company.Rows.Add(Guid.NewGuid(), "DeletedCompany")

266

Chapter 4 Using ADO.NET and XML with ASP.NET

 companyList.AcceptChanges()

 company.Rows(1)("CompanyName") = "ModifiedCompany1"

 company.Rows(2).Delete()

 company.Rows.Add(Guid.NewGuid(), "AddedCompany")

 'format xml

 companyList.Relations("Company_Employee").Nested = True

 For Each dt As DataTable In companyList.Tables

For Each dc As DataColumn In dt.Columns

dc.ColumnMapping = MappingType.Attribute

Next

 Next

 'write to xml diffgram file

 companyList.WriteXml(_

 MapPath("companyListDiffGram.xml"), XmlWriteMode.DiffGram)

 'display file

 Response.Redirect("companyListDiffGram.xml")

End Sub

//C#

protected void Button8_Click(object sender, EventArgs e)

{

 //get the dataset and populate

 DataSet companyList = GetDataSet();

 DataTable company = companyList.Tables["company"];

 company.Rows.Add(Guid.NewGuid(), "UnchangedCompany");

 company.Rows.Add(Guid.NewGuid(), "ModifiedCompany");

 company.Rows.Add(Guid.NewGuid(), "DeletedCompany");

 companyList.AcceptChanges();

 company.Rows[1]["CompanyName"] = "ModifiedCompany1";

 company.Rows[2].Delete();

 company.Rows.Add(Guid.NewGuid(), "AddedCompany");

 //format xml

 companyList.Relations["Company_Employee"].Nested = true;

 foreach (DataTable dt in companyList.Tables)

{

foreach (DataColumn dc in dt.Columns)

{

dc.ColumnMapping = MappingType.Attribute;

}

}

 //write to xml diffgram file

 companyList.WriteXml(

 MapPath("CompanyListDiffGram.xml"), XmlWriteMode.DiffGram);

 //display file

Lesson 1: Using the ADO.NET Disconnected Classes

267

}

 Response.Redirect("CompanyListDiffGram.xml");

The DiffGram is mostly used in an environment where a user occasionally connects to

a database to synchronize a disconnected DataSet object with the current information

that is contained in the database. When the user is not connected to the database, the

DataSet object is stored locally as a DiffGram to ensure that you still have the original

data, because the original data is needed when it’s time to send your changes back to

the database.

The DiffGram contains all of the DataRowVersion information, as shown in the fol

lowing XML document. Company1 has not been modified. Notice that Company2

has been modified, and its status is indicated as such. Also notice that the bottom of

the XML document contains the original information for DataRow objects that have

been modified or deleted. This XML document also shows Company3 as deleted

because Company3 has ―before‖ information but not current information.

Company4 is an inserted DataRow object as indicated, so this DataRow object has

no ―before‖ information.

<?xml version="1.0" standalone="yes"?>

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <CompanyList>

 <company diffgr:id="company1" msdata:rowOrder="0"

 Id="09b8482c-e801-4c63-82f6-0f5527b3768b"

 CompanyName="UnchangedCompany" />

 <company diffgr:id="company2" msdata:rowOrder="1"

 diffgr:hasChanges="modified"

 Id="8f9eceb3-b6de-4da7-84dd-d99a278a23ee"

 CompanyName="ModifiedCompany1" />

 <company diffgr:id="company4" msdata:rowOrder="3"

 diffgr:hasChanges="inserted"

 Id="65d28892-b8af-4392-8b64-718a612f6aa7"

 CompanyName="AddedCompany" />

 </CompanyList>

 <diffgr:before>

 <company diffgr:id="company2" msdata:rowOrder="1"

 Id="8f9eceb3-b6de-4da7-84dd-d99a278a23ee"

 CompanyName="ModifiedCompany" />

 <company diffgr:id="company3" msdata:rowOrder="2"

 Id="89b576d2-60ae-4c36-ba96-c4a7a8966a6f"

 CompanyName="DeletedCompany" />

 </diffgr:before>

</diffgr:diffgram>

268

Chapter 4 Using ADO.NET and XML with ASP.NET

Deserializing a DataSet from XML You can deserialize an XML file or stream into a

DataSet object by loading the schema and reading the stream. You can use the follow

ing code to read the schema file and the load the XML file:

'VB

Protected Sub Button9_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button9.Click

'add grids to form

Dim gvCompany As GridView = GetGridView(275, 20)

Dim gvEmployee As GridView = GetGridView(275, 125)

 'get the dataset and populate schema

Dim companyList as new DataSet()

companyList.ReadXmlSchema(MapPath("CompanyListSchema.xsd"))

'populate from file

companyList.ReadXml(MapPath("CompanyListNested.xml"))

'display

gvCompany.DataSource = companyList

gvCompany.DataMember = "Company"

gvEmployee.DataSource = companyList

gvEmployee.DataMember = "Employee"

gvCompany.DataBind()

gvEmployee.DataBind()

End Sub

//C#

protected void Button9_Click(object sender, EventArgs e)

{

//add grids to form

 GridView gvCompany = GetGridView(275, 20);

GridView gvEmployee = GetGridView(275, 125);

//get the dataset and populate schema

DataSet companyList = new DataSet();

companyList.ReadXmlSchema(MapPath("CompanyListSchema.xsd"));

//populate from file

companyList.ReadXml(MapPath("CompanyListNested.xml"));

//display

gvCompany.DataSource = companyList;

gvCompany.DataMember = "Company";

gvEmployee.DataSource = companyList;

gvEmployee.DataMember = "Employee";

gvCompany.DataBind();

gvEmployee.DataBind();

}

Lesson 1: Using the ADO.NET Disconnected Classes

269

When reading an XML file, you can optionally pass an XmlReadMode enumeration

value. If this value is not passed, the default is XmlReadMode.IgnoreSchema. This

means that if the XML data file contains an XML schema definition, it is ignored.

Listed below are the other options of the XmlReadMode enumeration:

■ Auto The XML source is examined by the ReadXml method and the appropriate

mode is selected.

■ DiffGram If the XmlFile contains a DiffGram, the changes are applied to the

DataSet using the same semantics that the Merge method uses. (Merge is covered

in more detail in the next section.)

■ Fragment This option causes the XML to be read as a fragment. Fragments can

contain multiple root elements. FOR XML in SQL Server is an example of some

thing that produces fragments.

■ IgnoreSchema This causes any schema that is defined within the XML data file

to be ignored.

■ InferSchema Using this option, the XML file is read, and the DataTable objects

and DataColumn objects are created based on the data. If the DataSet currently

has DataTable objects and DataColumn objects, they are used and extended to

accommodate new tables and columns that exist in the XML document, but

don’t exist in the DataSet object. All data types of all DataColumn objects are a

string.

■ InferTypedSchema Using this option, the XML file is read, and the schema is cre

ated based on the data. An attempt is made to identify the data type of each col

umn, but if the data type cannot be identified, it is a string.

■ ReadSchema Using this option, the XML file is read, and then embedded

schema is searched for. If the DataSet already has DataTable objects with the

same name, an exception is thrown. All other existing tables remain.

Inferring a schema simply means that the DataSet attempts to create a schema for the

data based on looking for patterns of XML elements and attributes.

Serializing the DataSet Object as Binary Data The size of an XML file that is produced

when serializing a DataSet object can cause problems with resources, such as memory

and drive space or bandwidth, when you move this data across the network. If XML is

not required and you want the best performance, the DataSet can be serialized as a

270

Chapter 4 Using ADO.NET and XML with ASP.NET

binary file. The following code snippet writes the contents of the vendorData DataSet

that we previously defined and populated to a binary file:

'VB

'Added the following Imports statements to the top of the file

Imports System.Runtime.Serialization.Formatters.Binary

Imports System.IO

Protected Sub Button10_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button10.Click

 'get dataset and populate

 'get the dataset and populate

Dim companyList As DataSet = GetDataSet()

PopulateDataSet(companyList)

'set output to binary else this will be xml

companyList.RemotingFormat = SerializationFormat.Binary

'write to binary file

Using fs As New FileStream(_

 MapPath("CompanyList.bin"), FileMode.Create)

Dim fmt As New BinaryFormatter()

fmt.Serialize(fs, companyList)

End Using

'feedback

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "File Saved."

End Sub

//C#

//Added the following using statements to the top of the file

using System.Runtime.Serialization.Formatters.Binary;

using System.IO;

protected void Button10_Click(object sender, EventArgs e)

{

//get dataset and populate

//get the dataset and populate

DataSet companyList = GetDataSet();

PopulateDataSet(companyList);

//set output to binary else this will be xml

companyList.RemotingFormat = SerializationFormat.Binary;

//write to binary file

using (FileStream fs =

 new FileStream(MapPath("CompanyList.bin"), FileMode.Create))

{

}

Lesson 1: Using the ADO.NET Disconnected Classes

 BinaryFormatter fmt = new BinaryFormatter();

 fmt.Serialize(fs, companyList);

}

//feedback

Label lbl = GetLabel(275, 20);

lbl.Text = "File Saved.";

271

NOTE New in ADO.NET 2.0

The RemotingFormat property, which provides true binary serialization, is new in ADO.NET 2.0.

The DataSet object’s RemotingFormat property must be set to ensure binary serializa

tion. This property is also available on the DataTable object for scenarios where only

a single DataTable is to be binary serialized. Be careful when making the choice to seri

alize as XML or binary, because binary files contain more initial overhead (about 20

kilobytes) than XML files. For large DataSet objects, binary serialization always pro

duces a smaller file, but for small DataSet objects, binary serialization may not pro

duce the desired result.

Deserializing a DataSet from Binary Data You can easily deserialize the binary data

file that we created in the previous example into a DataSet from a file or stream. The

BinaryFormatter stores the schema automatically, so there is no need to load a schema

first. The BinaryFormatter automatically identifies the file as having been saved as

BinaryXml. You can use the following code to load the binary file and display the com

panyList:

'VB

Protected Sub Button11_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button11.Click

'add grids to form

Dim gvCompany As GridView = GetGridView(275, 20)

Dim gvEmployee As GridView = GetGridView(275, 125)

 'get the dataset from the file

Dim companyList As DataSet

Using fs As New FileStream(_

 MapPath("CompanyList.bin"), FileMode.Open)

 Dim fmt As New BinaryFormatter()

 companyList = CType(fmt.Deserialize(fs), DataSet)

End Using

'display

gvCompany.DataSource = companyList

272

Chapter 4 Using ADO.NET and XML with ASP.NET

gvCompany.DataMember = "Company"

gvEmployee.DataSource = companyList

gvEmployee.DataMember = "Employee"

gvCompany.DataBind()

gvEmployee.DataBind()

End Sub

//C#

protected void Button11_Click(object sender, EventArgs e)

{

//add grids to form

 GridView gvCompany = GetGridView(275, 20);

GridView gvEmployee = GetGridView(275, 125);

//get the dataset from the file

DataSet companyList;

using (FileStream fs = new FileStream(

 MapPath("CompanyList.bin"), FileMode.Open))

{

 BinaryFormatter fmt = new BinaryFormatter();

 companyList = (DataSet)fmt.Deserialize(fs);

}

//display

gvCompany.DataSource = companyList;

gvCompany.DataMember = "Company";

gvEmployee.DataSource = companyList;

gvEmployee.DataMember = "Employee";

gvCompany.DataBind();

gvEmployee.DataBind();

}

Using Merge to Combine DataSet Data

On many occasions, data available in one DataSet must be combined with another

DataSet. For example, an expense application might need to combine serialized

DataSet objects (expense reports) received by e-mail from a number of people. It’s

also common within an application and (based on the user clicking Update) can

merge the modified version back to the original DataSet.

The Merge method on the DataSet is used to combine data from multiple DataSet

objects. The Merge method has several overloads that allow data to be merged from

DataSet, DataTable, or DataRow objects. The following code example demonstrates

how to use the Merge method to combine changes from one DataSet into another

DataSet:

'VB

Protected Sub Button12_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button12.Click

 'add grids to form

Lesson 1: Using the ADO.NET Disconnected Classes

273

 Dim gvcompany As GridView = GetGridView(275, 20)

 Dim gvemployee As GridView = GetGridView(275, 125)

 'get the dataset

 Dim original As DataSet = GetDataSet()

 'add AdventureWorks

 original.Tables("Company").Rows.Add(_

 Guid.NewGuid(), "AdventureWorks")

 'copy the dataset

 Dim copy as DataSet = original.Copy()

 'modify the copy

 Dim aw as DataRow = copy.Tables("Company").Rows(0)

 aw("CompanyName") = "AdventureWorks Changed"

 Dim empId as Guid

 empId = Guid.NewGuid()

 copy.Tables("Employee").Rows.Add(empId, aw("Id"), _

"MarkLast", "MarkFirst", 90.00)

 empId = Guid.NewGuid()

 copy.Tables("Employee").Rows.Add(empId, aw("Id"), _

 "SueLast", "SueFirst", 41.00)

 'merge changes back to the original

 original.Merge(copy, False, MissingSchemaAction.AddWithKey)

 'display

 gvcompany.DataSource = original

 gvcompany.DataMember = "company"

 gvemployee.DataSource = original

 gvemployee.DataMember = "employee"

 gvcompany.DataBind()

 gvemployee.DataBind()

End Sub

//C#

protected void Button12_Click(object sender, EventArgs e)

{

 //add grids to form

 GridView gvcompany = GetGridView(275, 20);

 GridView gvemployee = GetGridView(275, 125);

 //get the dataset

 DataSet original = GetDataSet();

 //add AdventureWorks

 original.Tables["Company"].Rows.Add(

 Guid.NewGuid(), "AdventureWorks");

 //copy the dataset

 DataSet copy = original.Copy();

274

Chapter 4 Using ADO.NET and XML with ASP.NET

 //modify the copy

 DataRow aw = copy.Tables["Company"].Rows[0];

 aw["CompanyName"] = "AdventureWorks Changed";

 Guid empId;

 empId = Guid.NewGuid();

 copy.Tables["Employee"].Rows.Add(empId, aw["Id"],

"MarkLast", "MarkFirst", 90.00m);

 empId = Guid.NewGuid();

 copy.Tables["employee"].Rows.Add(empId, aw["Id"],

 "SueLast", "SueFirst", 41.00m);

 //merge changes back to the original

 original.Merge(copy, false, MissingSchemaAction.AddWithKey);

 //display

 gvcompany.DataSource = original;

 gvcompany.DataMember = "Company";

 gvemployee.DataSource = original;

 gvemployee.DataMember = "Employee";

 gvcompany.DataBind();

 gvemployee.DataBind();

}

The Merge method is always called on the DataSet that you will merge into; it takes

three parameters, and is then called. The first parameter is the Copy object. The sec

ond parameter is a Boolean called preserveChanges, which specifies whether updates

from the copy DataSet should overwrite changes made in the original object. The last

parameter is a MissingSchemaAction enumeration member. The AddSchemaWithKey is

selected, which means that if a new DataTable is added to the copy DataSet object, the

new DataTable and its data are added to the original DataSet object. The following is

a list of the MissingSchemaAction enumeration members:

■ Add Adds the necessary DataTable and DataColumn objects to complete the

schema.

■ AddWithPrimaryKey Adds the necessary DataTable, DataColumn, and Prima

ryKey objects to complete the schema.

■ Error Shows when an exception is thrown if a DataColumn does not exist in the

DataSet that is being updated.

■ Ignore Ignores data that resides in DataColumns that are not in the DataSet

being updated.

When you use the Merge method, make sure each of the DataTable objects has a primary

key. Failure to set the PrimaryKey property of the DataTable object results in a DataRow

object being appended rather than an existing DataRow object being modified.

Quick Check

Lesson 1: Using the ADO.NET Disconnected Classes

275

1. When working with disconnected data, what primary data object must you

always have at least one of?

2. You have a DataSet with Order and OrderDetail DataTable objects. You want

to be able to retrieve the OrderDetail rows for a specific Order. What data

object can you use to navigate from the Order row to the OrderDetail rows?

3. You want to save a DataSet object to an XML file, but you are concerned

that you may lose the original version of the DataRow object. How should

you save the DataSet object?

Quick Check Answers

1. A DataTable object.

2. The DataRelation object.

3. Save it as a DiffGram.

Lab: Working with Disconnected Data

In this lab, you create and use a typed DataSet that you add graphically to your Web

site. This DataSet populates a GridView control with Customer rows.

� Exercise 1: Create the Web Site and the Typed DataSet

In this exercise, you create the Web site and add the controls to the site.

1. Open Visual Studio 2005 and create a new Web site called WorkingWith

DisconnectedData, using your preferred programming language. The new

Web site is created, and a Web page called Default.aspx is displayed.

2. In the Solution Explorer, add a typed DataSet graphically by right-clicking the

Web site project and selecting Add New Item. Select DataSet, name the DataSet

Sales.xsd, and click OK. When prompted to create the App_Code folder, click

Yes. You will also be prompted to select a database connection; click Cancel.

3. Drag a DataTable from the ToolBox and drop it onto the DataSet Editor surface.

4. Select the DataTable. In the Properties window, set the name of the DataTable to

Customer.

276

Chapter 4 Using ADO.NET and XML with ASP.NET

5. Add the following columns to the Customer Table by right-clicking the Data-

Table, selecting Add, and selecting Column.

Column Name Data Type

Id System.Guid

CustomerName System.String

6. Close and save the Sales type instance called DataSet.

� Exercise 2: Add GridView and DataSet

In this exercise, you add a GridView control to the Default.aspx page. In the code-behind

page, you instantiate the Sales DataSet, populate it, and bind it to the GridView control.

1. Open the Web site that you created in Exercise 1. Alternatively, you can open the

completed Lesson 1, Exercise 1 project from the CD.

2. Add a GridView control to the Default.aspx Web page. Regardless of the language

you choose, your .aspx source for the form element should look like the following:

<form id="form1" runat="server">

<div>

 <asp:GridView ID="GridView1" runat="server"

 Style="z-index: 100; left: 55px; position: absolute;top: 15px">

 </asp:GridView>

</div>

</form>

3. Double-click an empty location on the Web page to go to the code-behind page. In

the code-behind page, add code to create and populate an instance of the Sales

DataSet, and assign the DataSet object to the GridView. This code only needs to exe

cute when the page is not being posted back and should look like the following:

'VB

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then

 Dim salesDataSet As New Sales()

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Acme")

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Northwind Traders")

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "TailSpin Toys")

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Coho Winery")

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Litware, Inc.")

 GridView1.DataSource = salesDataSet

 GridView1.DataMember = "Customer"

 DataBind()

 End If

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

Lesson 1: Using the ADO.NET Disconnected Classes

277

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

{

 Sales salesDataSet = new Sales();

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Acme");

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Northwind Traders");

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "TailSpin Toys");

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Coho Winery");

 salesDataSet.Customer.Rows.Add(Guid.NewGuid(), "Litware, Inc.");

 GridView1.DataSource = salesDataSet;

 GridView1.DataMember = "Customer";

 DataBind();

}

}

}

4. Run the Web page. Figure 4-10 shows the results.

Figure 4-10 The typed DataSet is populated and bound to the GridView control.

280

Chapter 4 Using ADO.NET and XML with ASP.NET

Lesson 2: Using the ADO.NET Connected Classes

The ADO.NET libraries contain provider classes, which are classes that you can use to

transfer data between a data store and the client application. There are many different

kinds of data stores, meaning that there is a need for specialized code to provide the

necessary bridge between the disconnected data access classes and a particular data

store. The provider classes fulfill this need.

This lesson focuses on these specialized classes, starting with the most essential, such

as DbConnection and DbCommand, and concludes with the more elaborate classes that

have been added in ADO.NET 2.0, such as DbProviderFactory and DbProviderFactories.

After this lesson, you will be able to:

■ Identify and use the following connected data classes in your Web application:

❑ DbConnection

❑ DbCommand

❑ DbDataAdapter

❑ DbProviderFactory

❑ DbProviderFactories

Estimated lesson time: 60 minutes

Using Provider Classes to Move Data

The classes that are responsible for the movement of data between the disconnected

data classes in the client application and the data store are referred to as connected

classes or provider classes. The Microsoft .NET Framework contains the following

providers:

■ OleDb Contains classes that provide general-purpose data access to many data

sources. You can use this provider to access SQL Server 6.5 (and earlier ver

sions), SyBase, DB2/400, and Microsoft Access.

■ Odbc Contains classes for general-purpose data access to many data sources.

This provider is typically used when no newer provider is available.

■ SQL Server Contains classes that provide functionality similar to the generic

OleDb provider. The difference is that these classes are tuned for SQL Server 7.0

and later data access. SQL Server 6.5 and earlier must use the OleDb provider.

Lesson 2: Using the ADO.NET Connected Classes

281

■ Oracle Contains classes for accessing Oracle 8i and later servers. This provider

is similar to the OleDb provider but provides better performance.

You can also use third-party providers, such as DB2 and MySql, which you can down

load from the Web.

Table 4-1 lists the primary provider classes and interfaces. The classes are subclassed

by the provider, which replaces the Db prefix with a provider prefix, such as Sql, Ora

cle, Odbc, or OleDb. You can use the base classes with factory classes to create client

code that is not provider-specific. The following sections describe many of these

classes.

Table 4-1 Primary Provider Classes and Interfaces in ADO.NET

Base Classes

DbConnection

DbCommand

DbDataReader

DbTransaction

DbParameter

SqlClient Classes

SqlConnection

SqlCommand

SqlDataReader

SqlTransaction

SqlParameter

Generic Interface

IDbConnection

IDbCommand

IDataReader/IDataRecord

IDbTransaction

IDbDataParameter

DbParameterCollection SqlParameterCollection IDataParameterCollection

DbDataAdapter

DbCommandBuilder

DbConnectionString-

Builder

DBDataPermission

SqlDataAdapter

SqlCommandBuilder

SqlConnectionStringBuilder

SqlPermission

IDbDataAdapter

Getting Started with the DbConnection Object

To access a data store, you need a valid, open connection object. The DbConnection

class is an abstract class that the provider-specific connection classes inherit from. The

connection class hierarchy is shown in Figure 4-11.

282

Chapter 4 Using ADO.NET and XML with ASP.NET

DbConnection

Abstract Class

Component

SqlConnection

Sealed Class

DbConnection

ICloneable

IDbConnection

IDisposable

OracleConnection

Sealed Class

DbConnection

ICloneable

OleDbConnection

Sealed Class

DbConnection

ICloneable

IDbConnection

IDisposable

OdbcConnection

Sealed Class

DbConnection

ICloneable

Figure 4-11 The DbConnection class hierarchy.

To create a connection, you must have a valid connection string. The following code

snippet shows how to create the connection object and then assign the connection

string. When you are finished working with the connection object, you must close the

connection to free up the resources being held. The pubs sample database is used in

this example. The pubs and Northwind sample databases are available from the

Microsoft download site and are also included on the sample disc.

'VB

Dim connection as DbConnection = new SqlConnection()

connection.ConnectionString = _

"Server=.;Database=pubs;Trusted_Connection=true"

connection.Open()

'Do lots of cool work here

connection.Close()

//C#

DbConnection connection = new SqlConnection();

connection.ConnectionString =

"Server=.;Database=pubs;Trusted_Connection=true";

connection.Open();

//Do lots of cool work here

connection.Close();

Creating an instance of the SqlConnection class using the SQL Server .NET provider

creates the DbConnection. The ConnectionString property is initialized to use the local

machine (".") and the database is set to pubs. Lastly, the connection uses a trusted con

nection for authentication when connecting to SQL Server.

Lesson 2: Using the ADO.NET Connected Classes

283

The connection must be opened before you can send commands to the data store,

and you must always close the connection when you’re done to prevent orphaned

connections to the data store. You can close the connection by executing the Close

method or by executing the Dispose method. It’s common to create a ―using‖ block to

force the Dispose method to execute, as shown in the following code snippet.

NOTE New in ASP.NET 2.0

The using block is new to Visual Basic in 2.0 of the .NET Framework, but it has always been in C#.

'VB

using (connection)

connection.Open()

'cool commands here...

End Using

//C#

using (connection)

{

connection.Open();

//cool commands here...

}

You can place the using block inside a try/catch block to force the connection to be

disposed, which typically provides a cleaner implementation than the try/catch/

finally block.

Regardless of the programming language used, the connection string is the same. The

following sections explain how to configure a connection string using each of the

.NET providers.

Configuring an ODBC Connection String Open Database Connectivity (ODBC) is

one of the older technologies that the .NET Framework supports, primarily because

there are still many scenarios where the .NET Framework is required to connect to

older database products that have ODBC drivers. Table 4-2 describes the most com

mon ODBC connection string settings.

Table 4-2 ODBC Connection String Keywords

Keyword

Driver

Description

The ODBC driver to use for the connection.

284

Chapter 4 Using ADO.NET and XML with ASP.NET

Table 4-2 ODBC Connection String Keywords

Keyword Description

DSN A data source name, which can be configured via Control

Panel | Administrative Tools | Data Sources (ODBC).

Server The name of the server to connect to.

Trusted_Connection A description that specifies what security is based on using

the domain account of the currently logged-on user.

Database The database to connect to.

DBQ Typically, the physical path to a data source.

Working with Sample ODBC Connection Strings The following connection string

instructs the text driver to treat the files that are located in the C:\Sample\MySample-

Folder subdirectory as tables in a database.

Driver={Microsoft Text Driver (*.txt; *.csv)};

DBQ=C:\\Sample\\MySampleFolder;

The following connection string instructs the Access driver to open the Northwind

database file that is located in the C:\Program Files\mySampleFolder folder.

Driver={Microsoft Access Driver (*.mdb)};

DBQ=C:\\program files\\mySampleApp\\northwind.mdb

The following connection string uses the settings that have been configured as a data

source name (DSN) on the current machine.

DSN=My Application DataSource

The following is a connection to an Oracle database on the ORACLE8i7 servers. The

name and password are passed in as well.

Driver={Microsoft ODBC for Oracle};

Server=ORACLE8i7;

UID=john;

PWD=s3$W%1Xz

The following connection string uses the Excel driver to open the MyBook.xls file.

Driver={Microsoft Excel Driver (*.xls)};

DBQ=C:\\Samples\\MyBook.xls

Lesson 2: Using the ADO.NET Connected Classes

285

The following connection string uses the SQL Server driver to open the Northwind

database on MyServer using the passed-in user name and password.

DRIVER={SQL Server};

SERVER=MyServer;

UID=AppUserAccount;

PWD=Zx%7$ha;

DATABASE=northwind;

This connection string uses the SQL Server driver to open the Northwind database on

MyServer using SQL Server’s trusted security.

DRIVER={SQL Server};

SERVER=MyServer;

Trusted_Connection=yes

DATABASE=northwind;

Configuring an OLEDB Connection String Another common, but older, technol

ogy that is used to access databases is Object Linking and Embedding for Data

bases (OLEDB). Table 4-3 describes the most common OLEDB connection string

settings.

Table 4-3 OLEDB Connection String Keywords

Keyword

Data Source

File Name

Persist Security Info

Provider

Description

The name of the database or physical location of

the database file.

The physical location of a file that contains the

real connection string.

A setting which, if set to true, retrieves the con

nection string and returns the complete con

nection string that was originally provided. If

set to false, the connection string contains the

information that was originally provided,

minus the security information.

The vendor-specific driver to use for connecting

to the data store.

286

Chapter 4 Using ADO.NET and XML with ASP.NET

Working with Sample OLEDB Connection Strings This connection string uses the set

tings stored in the MyAppData.udl file. (The .udl extension stands for universal data

link.)

FILE NAME=C:\Program Files\MyApp\MyAppData.udl

This connection string uses the Jet driver, which is the Access driver, and opens the

demo database file. Retrieving the connection string from the connection returns the

connection that was originally passed in, minus the security information.

Provider=Microsoft.Jet.OLEDB.4.0;

Data Source=C:\Program Files\myApp\demo.mdb;

Persist Security Info=False

Configuring a SQL Server Connection String The SQL Server provider allows you to

access SQL Server 7.0 and later. If you need to connect to SQL Server 6.5 and earlier,

use the OLEDB provider. Table 4-4 describes the most common SQL Server connec

tion string settings.

Table 4-4 SQL Server Connection String Keywords

Keyword Description

Data Source, addr, The name or IP address of the database server.

address, network address,

server

Failover Partner A support provider for database mirroring in SQL

Server 2005.

AttachDbFilename, The full or relative path and name of a file containing

extended properties, initial the database to be attached to. The path supports the

file name keyword string |DataDirectory|, which points to the

application’s data directory. The database must

reside on a local drive. The log file name must be in

the format <database-File-Name>_log.ldf or it will

not be found. If the log file is not found, a new log file

is created.

Initial Catalog, database The name of the database to use.

Lesson 2: Using the ADO.NET Connected Classes

Table 4-4 SQL Server Connection String Keywords

Keyword Description

287

Integrated Security,

trusted_connection

Persist Security Info,

persistsecurityinfo

User ID, uid, user

Password, pwd

Enlist

Pooling

Max Pool Size

Min Pool Size

Asynchronous Processing,

async

A secure connection to SQL Server, in which authenti

cation is via the user’s domain account. Can be set to

true, false, or sspi. The default is false.

A setting that, if set to true, causes a retrieval of the con

nection string to return the complete connection string

that was originally provided. If set to false, the connec

tion string contains the information that was originally

provided, minus the security information. The default

is false.

The user name to use to connect to the SQL Server

when not using a trusted connection.

The password to use to log onto SQL Server when not

using a trusted connection.

When set to true, this pooler automatically enlists the

connection into the caller thread’s ongoing transaction

context.

A setting that, when set to true, causes the request for a

new connection to be drawn from the pool. If the pool

does not exist, one is created.

A setting that specifies the maximum allowed connec

tions in the connection pool. The default is 100.

A setting that specifies the minimum number of connec

tions to keep in the pool. The default is 0.

A setting that, when set to true, enables execution of

asynchronous commands on the connection. (Syn

chronous commands should use a different connec

tion to minimize resource usage.) The default is false.

288

Chapter 4 Using ADO.NET and XML with ASP.NET

Table 4-4 SQL Server Connection String Keywords

Keyword Description

Connection Reset A setting that, when set to true, indicates that the data

base connection is reset when the connection is

removed from the pool. The default is true. A setting of

false results in fewer round-trips to the server when cre

ating a connection, but the connection state is not

updated.

MultipleActiveResultSets A setting that, when set to true, allows for the retrieval

of multiple forward-only, read-only result sets on the

same connection. The default is false.

Replication A setting that is used by SQL Server for replication.

Connect Timeout, The time in seconds to wait while an attempt is made

connection timeout, to connect to the data store. The default is 15 seconds.

timeout

Encrypt A setting in which, if Encrypt is set to true and SQL

Server has a certificate installed, all communication

between the client and server is SSL-encrypted.

Load Balance Timeout, The maximum time in seconds that a pooled connec

connection lifetime tion should live. The maximum time is checked only

when the connection is returned to the pool. This set

ting is useful in getting load-balanced cluster configura

tions to force a balance between a server that is online

and a server that has just started. The default is 0.

Network Library, net, The network library DLL to use when connecting to

network SQL Server. Allowed libraries include dbmssocn

(TCP/IP), dbnmpntw (Named Pipes), dbmsrpcn

(Multiprotocol), dbmsadsn (Apple Talk), dbmsgnet

(VIA), dbmsipcn (Shared Memory), and dbmsspxn

(IPX/SPX).

The default is dbmssocn (TCP/IP), but if a network is

not specified and either ―.‖ or ―(local)‖ is specified for

the server, shared memory is used as the default.

Lesson 2: Using the ADO.NET Connected Classes

Table 4-4 SQL Server Connection String Keywords

Keyword Description

Packet Size The size in bytes for each packet that is sent to SQL

Server. The default is 8192.

289

Application Name, app

Current Language,

language

Workstation ID, wsid

The name of the application. If not set, this defaults to

.NET SQL Client Data Provider.

The SQL Server language record name.

The name of the client computer that is connecting to

SQL Server.

Working with Sample SQL Server Connection Strings The following connection

string connects to the northwind database on the current computer (localhost) using

integrated security. This connection must be made within 30 seconds or an exception

is thrown. The security information is not persisted.

Persist Security Info=False;

Integrated Security=SSPI;

database=northwind;

server=localhost;

Connect Timeout=30

This next connection string uses the TCP sockets library (DBMSSOCN) and connects

to the MyDbName database on the computer located at IP address 192.168.1.5, using

port 1433. Authentication is based on using MyUsername as the user name and

u$2hJq@1 as the password.

Network Library=DBMSSOCN;

Data Source=192.168.1.5,1433;

Initial Catalog=MyDbName;

User ID=myUsername;

Password= u$2hJq@1

Attaching to a Local SQL Database File with SQL Express Microsoft SQL Server

2005 Express Edition is installed as part of the default Visual Studio 2005 installa

tion, which makes it an excellent database to use when you’re developing applications

that are destined to be used on SQL Server 2005 Express Edition or SQL Server 2005.

When you’re building small Web sites and single-user applications, SQL Server 2005

290

Chapter 4 Using ADO.NET and XML with ASP.NET

Express Edition is a natural choice due to its XCOPY deployment capabilities, reliabil

ity, and high-performance engine. In addition, SQL Server 2005 Express Edition data

bases can easily be attached to SQL Server 2005. To attach a local database file, you

can use the following connection string.

Data Source=.\SQLEXPRESS;

AttachDbFilename=C:\MyApplication\PUBS.MDF;

Integrated Security=True;

User Instance=True

In this example, the Data Source is set to an instance of SQL Express called .\SQLEX

PRESS. The database file name is set to the database file located at C:\MyApplica

tion\PUBS.MDF. Note that the log file (PUBS_LOG.LDF) must also exist. Integrated

security is used to authenticate with SQL Server 2005 Express Edition; setting User

Instance to true starts an instance of SQL Server 2005 Express Edition using the cur

rent user’s account.

Although you can use SQL Server to attach to a local file, SQL Server does not work

with the User Instance=True setting. Also, SQL Server keeps the database attached

when your application ends, so the next time you run SQL Server, an exception will

be thrown because the data file is already attached.

AttachDBFilename can also understand the keyword |DataDirectory| to use the appli

cation’s data directory. Here is the revised connection string.

Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|\PUBS.MDF;

Integrated Security=True;

User Instance=True

For a Web application, the DataDirectory keyword resolves to the App_Data folder.

Storing the Connection String in the Web Configuration File C o n n e c t i o n s t r i n g s

should always be located outside your source code to simplify changes without

requiring a recompile of your application. You can store connection strings in the

machine or Web configuration file. You place the <connectionStrings> element under

the <configuration> root element. This section supports the <add>, <remove>, and

<clear> tags, as shown here:

<connectionStrings>

<clear />

 <add name="PubsData"

 providerName="System.Data.SqlClient"

 connectionString=

 "Data Source=.\SQLEXPRESS;

Lesson 2: Using the ADO.NET Connected Classes

 AttachDbFilename=|DataDirectory|PUBS.MDF;

 Integrated Security=True;

 User Instance=True"/>

</connectionStrings>

291

This example clears the list of connectionStrings that may have been defined in the

machine configuration file, and then adds a new connection string setting called Pubs-

Data. The connectionStrings can be accessed in code by using the static Connection-

Strings collection on the ConfigurationManager class. In the following code sample, a

Label control is dynamically created, the PubsData connection string is read from the

Web.config file, and connection information is displayed in the Label:

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

Dim lbl As Label = GetLabel(275, 20)

'Get the settings from the configuration file

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

'name = "PubsData"

lbl.Text = "<p>Name: " _

+ pubs.Name + "</p>"

'provider = "System.Data.SqlClient"

lbl.Text += "<p>Provider Name: " _

+ pubs.ProviderName + "</p>"

'cnString = "Data Source=.\SQLEXPRESS;

' AttachDbFilename=|DataDirectory|PUBS.MDF;

' Integrated Security=True;

' User Instance=True"

 lbl.Text += "<p>Connection String: " _

+ pubs.ConnectionString + "</p>"

End Sub

Private Function GetLabel(ByVal left As Integer, _

 ByVal top As Integer) As Label

Dim lbl As New Label()

lbl.Style.Add("position", "absolute")

lbl.Style.Add("left", left.ToString() + "px")

lbl.Style.Add("top", top.ToString() + "px")

lbl.EnableViewState = False

form1.Controls.Add(lbl)

Return lbl

End Function

//C#

protected void Button1_Click(object sender, EventArgs e)

{

Label lbl = GetLabel(275, 20);

//Get the settings from the configuration file

292

Chapter 4 Using ADO.NET and XML with ASP.NET

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

//name = "PubsData"

lbl.Text = "<p>Name: "

+ pubs.Name + "</p>";

//provider = "System.Data.SqlClient"

lbl.Text += "<p>Provider Name: "

+ pubs.ProviderName + "</p>";

//cnString = "Data Source=.\SQLEXPRESS;

// AttachDbFilename=|DataDirectory|PUBS.MDF;

// Integrated Security=True;

// User Instance=True"

lbl.Text += "<p>Connection String: "

+ pubs.ConnectionString + "</p>";

}

private Label GetLabel(int left, int top)

{

Label lbl = new Label();

lbl.Style.Add("position", "absolute");

lbl.Style.Add("left", left.ToString() + "px");

lbl.Style.Add("top", top.ToString() + "px");

lbl.EnableViewState = false;

form1.Controls.Add(lbl);

return lbl;

}

Working with Connection Pools Creating and opening a connection to a data store

can be a time-consuming and resource-intensive proposition, especially on Web-

based systems, if you require separate connections to the data store on a user-by-user

basis. It’s easy to get into a situation where every user has one or more open connec

tions to the database and the database server is consuming too many resources just

managing connections. Ideally, the data store should be spending most of its time

delivering data and as little time as possible maintaining connections. This is where

connection pooling can help.

Connection pooling is the process of reusing existing active connections instead of cre

ating new connections when a request is made to the database. It involves the use of

a connection manager that is responsible for maintaining a list, or pool, of available

connections. When the connection manager receives a request for a new connection,

it checks its pool for available connections. If a connection is available, it is returned.

If no connections are available, and the maximum pool size has not been reached, a

new connection is created and returned. If the maximum pool size has been reached,

the connection request is added to the queue and the next available connection is

returned, as long as the connection timeout has not been reached.

Lesson 2: Using the ADO.NET Connected Classes

293

Connection pooling is controlled by parameters placed into the connection string.

The following is a list of parameters that affect pooling:

■ Connection Timeout The time in seconds to wait while a connection to the data

store is attempted. The default is 15 seconds.

■ Min Pool Size The minimum amount of pooled connections to keep in the pool.

The default is 0. It’s usually good to set this to a low number, such as 5, when

your application requires consistent, fast response—even if the application is

inactive for long periods of time.

■ Max Pool Size The maximum allowed number of connections in the connection

pool. The default is 100, which is usually more than enough for most Web site

applications.

■ Pooling A setting in which a value of true causes the request for a new connec

tion to be drawn from the pool. If the pool does not exist, it is created. The

default is true.

■ Connection Reset An indicator that the database connection is reset when the

connection is removed from the pool. The default is true. A value of false results

in fewer round-trips to the server when creating a connection, but the connec

tion state is not updated.

■ Load Balancing Timeout, Connection Lifetime The maximum time in seconds that

a pooled connection should live. The maximum time is checked only when the

connection is returned to the pool. This setting is useful in load-balanced cluster

configurations to force a balance between a server that is online and a server that

has just started. The default is 0.

■ Enlist When this value is true, the connection is automatically enlisted into the

creation thread’s current transaction context. The default is true.

To implement connection pooling, you must follow a few rules:

■ The connection string must be exactly the same, character-by-character, for

every user or service that participates in the pool. Remember that each character

must match in terms of lowercase and uppercase as well.

■ The user ID must be the same for every user or service that participates in the

pool. Even if you specify integrated security=true, the Windows user account of

the process is used to determine pool membership.

■ The process ID must be the same. It has never been possible to share connec

tions across processes, and this limitation extends to pooling.

294

Chapter 4 Using ADO.NET and XML with ASP.NET

Where Is the Pool Located? Connection pooling is a client-side technology, which

means that the connection pool exists on the machine that initiates the DbConnection

object’s Open statement. The database server has no idea that there might be one or

more connection pools involved in your application.

When Is the Pool Created? A connection pool group is an object that manages the

connection pools for a specific ADO.NET provider. When the first connection is

instantiated, a connection pool group is created, but the first connection pool is not

created until the first connection is opened.

Do Connections Stay in the Pool? A connection is removed from the pool of avail

able connections for use and then returned to the pool of available connections.

When a connection is returned to the connection pool, it has a default idle lifetime of

four to eight minutes, which is an intentionally random time span to ensure that idle

connections are not held indefinitely. You can set the connection string’s Min Pool

Size to one or greater when you want to make sure that at least one connection is avail

able when your application is idle for long periods.

Using the Load-Balancing Timeout The connection string has a setting called the

Load Balancing Timeout, which is also known as the Connection Lifetime. Connec

tion Lifetime still exists for backward compatibility, but the new name better

describes this setting’s intended use. Use this setting only in an environment with

clustered servers, because it’s meant to aid in load-balancing database connections.

This setting is only examined on closed connections. If the connection stays open

longer than its Load Balancing Timeout setting, the connection is destroyed. Other

wise, the connection is added back into the pool.

The Load Balancing Timeout setting can be used to ensure that new connections are

being created when you are using a database server cluster. If two database servers are

clustered together and they appear heavily loaded, you may choose to add a third

database server. After adding the third database server, you may notice that the origi

nal databases still seem overloaded and the new server has few or no connections.

The problem is that connection pooling is doing its job by maintaining connections to

the existing database servers. Specify a Load Balancing Timeout setting that throws

out some of the good connections so the new connection can go to the newly added

database server. You lose a bit of performance because you destroy good connections,

but the new connections potentially go to a new database server, which improves per

formance.

Lesson 2: Using the ADO.NET Connected Classes

295

Using the Visual Studio 2005 GUI to Add a Connection If you need to perform data

base-management tasks, you can add a connection to the database using the Server

Explorer window and the Connection Wizard. A connection is automatically created

for you for each database file that is added to your project, and you can also add con

nections manually. Figure 4-12 shows the Server Explorer window after the Pubs.mdf

and Northwind.mdf files were added to the project, and after a connection was man

ually added to the Northwind database on the local copy of SQL Server 2005 by right-

clicking the Connections node and selecting New Connection to start the Connection

Wizard.

Figure 4-12 The Server Explorer window shows the connections that were added.

You can use the connection to perform maintenance, modify the database schema

and data, and run queries. Also, controls such as the SqlDataSource allow you to select

one of these connections when you add the control to the Web page.

Securing Connection Strings With Encryption You store connections strings in your

configuration files to make it easy to change the connection string without requiring

a recompile of the application. The problem is that connection strings may contain

login information such as user names and passwords.

The solution is to encrypt the connection string section of your configuration file

by using the aspnet_regiis.exe utility. You can use the /? option to get help on the

utility.

You encrypt and decrypt the contents of a Web.config file by using the System.Con

figuration.DPAPIProtectedConfigurationProvider, which uses the Windows Data

Protection API (DPAPI) to encrypt and decrypt data, or the System.Configura

tion.RSAProtectedConfigurationProvider, which uses the RSA encryption algorithm

to encrypt and decrypt data.

296

Chapter 4 Using ADO.NET and XML with ASP.NET

When you need to use the same encrypted configuration file on many computers in

a Web farm, you must use the System.Configuration.RSAProtectedConfigurationPro

vider, which allows you to export the encryption keys used to encrypt the data. The

encryption keys can be imported into another server. This is the default setting. A typ

ical Web.config file might look like the following:

<?xml version="1.0"?>

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <appSettings/>

 <connectionStrings>

<add name="ConnectionString"

connectionString="Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|\northwnd.mdf;

Integrated Security=True;User Instance=True"

providerName="System.Data.SqlClient" />

 </connectionStrings>

 <system.web>

 …

 </system.web>

</configuration>

The connectionStrings element can be encrypted by running the Visual Studio 2005

Command Prompt, executing the following command, and specifying the full path to

your Web site folder:

aspnet_regiis -pef "connectionStrings" "C:\...\EncryptWebSite"

Note that the –pef switch requires you to pass the physical Web site path, which is the

last parameter. Be sure to verify the path to your Web.config file. The encrypted

Web.config file will look like the following:

<?xml version="1.0"?>

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<protectedData>

 <protectedDataSections>

 <add name="connectionStrings"

provider="RsaProtectedConfigurationProvider"

inheritedByChildren="false" />

 </protectedDataSections>

</protectedData>

<appSettings/>

<connectionStrings>

 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"

 xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<EncryptedKey Recipient=""

 xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod

Lesson 2: Using the ADO.NET Connected Classes

297

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <KeyName>Rsa Key</KeyName>

 </KeyInfo>

 <CipherData>

<CipherValue>PPWA1TkWxs2i698Dj07iLUberpFYIj6wBhbmqfmNK/plarau4i1k+xq5bZzB4VJW8

OkhwzcIIdZIXff6INJ1wlZz76ZV1DIbRzbH71t6d/L/qJtuOexXxTi2LrepreK/q3svMLpsJycnDPa

t9xaGoaLq4Cg3P19Z1J6HquFILeo=</CipherValue>

 </CipherData>

</EncryptedKey>

 </KeyInfo>

 <CipherData>

<CipherValue>Q1re8ntDDv7/dHsvWbnIKdZF6COA1y3S91hmnhUN3nxYfrjSc7FrjEVyJfJhl5EDX

4kXd8ukAjrqwuBNnQbsh1PAXNFDflzB4FF+jyPKP/jm1Q9mDnmiq+NCuo3KpKj8F4vcHbcj+f3GYqq

B4pYbblAvYnjPyPrrPmxLNT9KDtDr8pDbtGnKqAfcMnQPvA8l5w3BzPM4a73Vtt2kL/z9QJRu3Svd9

33taxOO/HufRJEnE2/hcBq30WcBmEuXx3LFNjV+xVmuebrInhhxQgM2froBKYxgjwWiWNjIIjIeTI2

FQ8nZ8V8kzAVohmDYkZpCj4NQGdrjD996h97phI6NnHZYZHJ7oPRz</CipherValue>

 </CipherData>

 </EncryptedData>

</connectionStrings>

<system.web>

…

</system.web>

</configuration>

If changes are made to the connectionStrings section using the GUI tools, the new

connection is encrypted, which means that you won’t have to run the aspnet_regiis

utility again.

You can decrypt the connectionStrings section by using the following command:

aspnet_regiis -pdf "connectionStrings" "C:\...\EncryptWebSite"

After the connectionStrings section is decrypted, it looks just as it did before it was

encrypted.

Using the DbCommand Object

The DbCommand object is used to send one or more Structured Query Language

(SQL) statements to the data store. The DbCommand can be any of the following types:

■ Data Manipulation Language (DML) Commands that retrieve, insert, update, or

delete data.

■ Data Definition Language (DDL) Commands that create tables or other database

objects, or modify the database schema.

■ Data Control Language (DCL) Commands that grant, deny, or revoke permissions.

298

Chapter 4 Using ADO.NET and XML with ASP.NET

The DbCommand object requires a valid open connection to issue the command to the

data store. A DbConnection object can be passed into the DbCommand object’s con

structor or attached to the DbCommand object’s Connection property after the DbCom

mand is created, but you should always consider using the CreateCommand method

on the DbConnection object to limit the amount of provider-specific code in your appli

cation. The DbConnection automatically creates the appropriate provider-specific

DbCommand.

The DbCommand also requires a valid value for its CommandText and Command-

Type properties. The following code snippet shows how to create and initialize a

DbCommand:

'VB

Protected Sub Button3_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.StoredProcedure

cmd.CommandText = "uspGetCustomerById"

Dim lbl as Label = GetLabel(275,20)

lbl.Text = "Command Created"

End Sub

//C#

protected void Button3_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

DbConnection connection =

 new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "uspGetCustomerById";

Label lbl = GetLabel(275, 20);

lbl.Text = "Command Created";

}

This code creates a SqlConnection object and assigns it to the connection variable that

has the data type of DbConnection. The DbConnection object is then used to create a

SqlCommand, which is assigned to the cmd variable. The DbConnection must be

opened before the command can be executed. To execute a stored procedure as

shown, the CommandText property contains the name of the stored procedure, while

the CommandType indicates that this is a call to a stored procedure.

Lesson 2: Using the ADO.NET Connected Classes

299

Using DbParameter Objects to Pass Data When you need to pass data to a stored

procedure, you should use DbParameter objects. For example, a user-defined stored

procedure called uspGetCustomerById might require a customer identification to

retrieve the appropriate customer. You can create DbParameter objects by using the

Parameters.Add method of the Command object, as shown here:

'VB

Protected Sub Button4_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button4.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.StoredProcedure

cmd.CommandText = "uspGetCustomerById"

Dim parm As DbParameter = cmd.CreateParameter()

parm.ParameterName = "@Id"

parm.Value = "AROUT"

cmd.Parameters.Add(parm)

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "Command and Parmaters Created"

End Sub

//C#

protected void Button4_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

DbConnection connection =

 new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "uspGetCustomerById";

DbParameter parm = cmd.CreateParameter();

parm.ParameterName = "@Id";

parm.Value = "AROUT";

cmd.Parameters.Add(parm);

Label lbl = GetLabel(275, 20);

lbl.Text = "Command and Parmaters Created";

}

This code creates and configures a DbConnection object and a DbCommand object. A

single parameter called @Id is created and assigned the value AROUT.

300

Chapter 4 Using ADO.NET and XML with ASP.NET

NOTE Be careful with parameter names and parameter order

The SQL provider requires that the parameter names match the parameter names defined in the

stored procedure. The creation of the parameters is, therefore, not order-dependent.

The OleDb provider, on the other hand, requires the parameters to be defined in the same order

that they are defined in the stored procedure. This means the name assigned to the parameter

need not match the name defined in the stored procedure.

Use the name assigned to the DbParameter object to access the parameter through

code. For example, to retrieve the value that is currently in the SqlParameter called

@Id, use the following code:

'VB

Dim id as String = cmd.Parameters("@Id").Value

//C#

string id = (string)((DbParameter)cmd.Parameters["@Id"]).Value;

Building SQL Commands Using Server Explorer The Server Explorer window can be

used to create SQL Commands by right-clicking a connection and selecting New

Query. This opens a four-pane window and prompts you to select tables, views, func

tion, and synonyms to be added to the query. The four-paned window provides win

dows for the following:

■ Diagram Pane Visually shows the tables and views that have been selected, and

also shows the relationships between them.

■ Criteria Pane Is a tabular pane that allows you to select the columns and specify

attributes for each column, such as alias, sort, and filters.

■ SQL Pane Is a textual pane that shows the actual SQL statement that is being

built.

■ Results Pane Is a tabular pane that shows the results after the query has been

executed.

Using the ExecuteNonQuery Method When you want to execute a DbCommand object

and you don’t expect a tabular result to be returned, you should use the ExecuteNon-

Query method. Examples of SQL statements that don’t return any rows are an insert, an

update, or a delete query. This method returns an integer that represents the number of

rows affected by the operation. The following example executes a SQL statement to

Lesson 2: Using the ADO.NET Connected Classes

301

increment the qty field in the sales table for sales with qty greater than 50; it returns the

number of rows that were updated.

'VB

Protected Sub Button5_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button5.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = _

 "UPDATE SALES SET qty = qty + 1 WHERE qty > 50"

connection.Open()

Dim count As Integer = cmd.ExecuteNonQuery()

connection.Close()

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "Count = " + count.ToString()

End Sub

//C#

protected void Button5_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "UPDATE SALES SET qty = qty + 1 WHERE qty > 50";

connection.Open();

int count = cmd.ExecuteNonQuery();

connection.Close();

Label lbl = GetLabel(275, 20);

lbl.Text = "Count = " + count.ToString();

}

Using the ExecuteScalar Method You may execute a query that is expected to return

a tabular result containing a single row and column, such as a query that retrieves the

total sales for the day. In situations such as this, the results can be treated as a single

return value. For example, the following SQL returns a result that consists of a single

row with a single column:

SELECT COUNT(*) FROM Sales

If you use the ExecuteScalar method, the .NET runtime does not create an instance of a

DataTable to hold the result, which means less resource usage and better performance.

302

Chapter 4 Using ADO.NET and XML with ASP.NET

The following code shows how to use the ExecuteScalar method to easily retrieve the

number of rows in the Sales table into a variable called count:

'VB

Protected Sub Button6_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button6.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT COUNT(*) FROM Sales"

connection.Open()

Dim count As Integer = cmd.ExecuteScalar()

connection.Close()

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "Count = " + count.ToString()

End Sub

//C#

protected void Button6_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT COUNT(*) FROM Sales";

connection.Open();

int count = (int)cmd.ExecuteScalar();

connection.Close();

Label lbl = GetLabel(275, 20);

lbl.Text = "Count = " + count.ToString();

}

Using the ExecuteReader Method The ExecuteReader method returns a DbDataReader

instance that represents a forward-only, read-only, server-side cursor. DbDataReader

objects can be created only by executing one of the ExecuteReader methods on the

DbCommand object. (See the next section for more information on the DbDataReader.)

The following example uses the ExecuteReader method to create a DbDataReader object

with the query results and continuously loops through the results until the end of data

has been reached (when the Read method returns false).

'VB

Protected Sub Button8_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button8.Click

Lesson 2: Using the ADO.NET Connected Classes

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT stor_id, ord_num FROM Sales"

connection.Open()

Dim rdr As DbDataReader = cmd.ExecuteReader()

Dim lbl As Label = GetLabel(275, 20)

While (rdr.Read())

 lbl.Text += rdr("stor_id") + ": " + rdr("ord_num") + "
"

End While

connection.Close()

End Sub

//C#

protected void Button8_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT stor_id, ord_num FROM Sales";

connection.Open();

 DbDataReader rdr = cmd.ExecuteReader();

Label lbl = GetLabel(275, 20);

while (rdr.Read())

{

 lbl.Text += rdr["stor_id"] + ": " + rdr["ord_num"] + "
";

}

connection.Close();

}

Using the DbDataReader Object

303

A DbDataReader object provides a high-performance method of retrieving data from

the data store. It delivers a forward-only, read-only, server-side cursor. This makes the

DbDataReader object an ideal choice for populating ListBox controls, DropDownList

controls, and even GridView controls that display read-only data. When you run

reports, you can use the DbDataReader object to retrieve the data from the data store.

The DbDataReader might not be a good choice when you are coding an operation that

modifies data and needs to send the changes back to the database. For data modifica

tions, the DbDataAdapter object, which is discussed in the next section, might be a

better choice.

304

Chapter 4 Using ADO.NET and XML with ASP.NET

The DbDataReader contains a Read method that retrieves data into its buffer. Only one

row of data is ever available at a time, which means that the data does not need to be

completely read into the application before it is processed. The following code popu

lates a new DataTable directly with the list of publishers from the pubs database:

'VB

Protected Sub Button9_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button9.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT pub_id, pub_name FROM publishers"

connection.Open()

Dim rdr As DbDataReader = cmd.ExecuteReader()

Dim publishers As New DataTable()

publishers.Load(rdr, LoadOption.Upsert)

connection.Close()

Dim gv as GridView = GetGridView(275,20)

gv.DataSource = publishers

gv.DataBind()

End Sub

//C#

protected void Button9_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT pub_id, pub_name FROM Publishers";

connection.Open();

 DbDataReader rdr = cmd.ExecuteReader();

DataTable publishers = new DataTable();

publishers.Load(rdr, LoadOption.Upsert);

connection.Close();

GridView gv = GetGridView(275, 20);

gv.DataSource = publishers;

gv.DataBind();

}

Notice that the DataTable object’s Load method contains a LoadOption parameter. The

LoadOption gives you the option of deciding which DataRowVersion should get the

incoming data. For example, if you load a DataTable object, modify the data, and then

save the changes back to the database, you might encounter concurrency errors if

someone else has modified the data between the time you got the data and the time

Lesson 2: Using the ADO.NET Connected Classes

305

you attempted to save the data. One option is to load the DataTable object again, using

the default PreserveCurrentValues enumeration value, which loads the original

DataRowVersion with the data from the database while leaving the current DataRow-

Version untouched. Next, you can simply execute the Update method again and the

update will succeed.

For this to work properly, the DataTable must have a PrimaryKey defined. Failure to

define a PrimaryKey results in duplicate DataRow objects being added to the Data-

Table object. The LoadOption enumeration members are as follows:

■ OverwriteChanges Overwrites the original DataRowVersion and the current

DataRowVersion and changes the RowState to Unchanged. New rows have a Row-

State of Unchanged as well.

■ PreserveChanges (default) Overwrites the original DataRowVersion, but does not

modify the current DataRowVersion. New rows have a RowState of Unchanged as

well.

■ Upsert Overwrites the current DataRowVersion, but does not modify the orig

inal DataRowVersion. New rows have a RowState of Added. Rows that had a

RowState of Unchanged have a RowState of Unchanged if the current DataRow-

Version is the same as the original DataRowVersion, but if they are different, the

RowState is Modified.

NOTE New in ASP.NET 2.0

Multiple Active Result Sets (MARS) is new in version 2.0 of the .NET Framework.

Using Multiple Active Result Sets (MARS) to Execute Multiple Commands on a

Connection One of the problems with the DbDataReader is that it keeps an open

server-side cursor while you are looping through the results of your query. If you try

to execute another command while the first command is still executing, you receive

an InvalidOperationException stating that ―There is already an open DataReader asso

ciated with this Connection which must be closed first.‖ You can avoid this exception

by setting the MultipleActiveResultSets connection string option to true when connect

ing to MARS-enabled hosts, such as SQL Server 2005. For example, the following con

nection string shows how this setting is added into a new connection string called

PubsDataMars:

306

Chapter 4 Using ADO.NET and XML with ASP.NET

<connectionStrings>

<clear />

 <add name="PubsData"

 providerName="System.Data.SqlClient"

 connectionString=

 "Data Source=.\SQLEXPRESS;

 AttachDbFilename=|DataDirectory|PUBS.MDF;

 Integrated Security=True;

 User Instance=True"/>

<add name="PubsDataMars"

 providerName="System.Data.SqlClient"

 connectionString=

 "Data Source=.\SQLEXPRESS;

 AttachDbFilename=|DataDirectory|PUBS.MDF;

 Integrated Security=True;

 User Instance=True;

 MultipleActiveResultSets=True"/>

</connectionStrings>

NOTE MARS performance

MARS does not provide any performance gains, but it does simplify your coding efforts. As a mat

ter of fact, setting MultipleActiveResultSets=True in the connection string has a negative performance

impact, so you should not turn on MARS arbitrarily.

MARS is something that you can live without. MARS simply makes your program

ming easier. Think of a scenario in which you execute a query to get a list of authors

and, while you are looping through a list of the authors that are returned, you want to

execute a second query to get the total royalties for each author.

On a database server without MARS, you could first collect the list of authors into a

collection and close the connection. After that, you could loop through the collection

to get each author’s ID and execute a query to get the total royalties for the author.

This means that you would loop through the authors twice: once to populate the col

lection, and again to get each author’s ID and execute a query to get the author’s total

of the royalties. A MARS solution is to simply create two connections: one for the

author list and one for the total of royalties query.

Another benefit that MARS provides is for a situation in which you have purchased

database client licenses that are based on the quantity of connections to the database.

Without MARS, you would have to open a separate connection to the database for

each command that needs to run at the same time, which means that you might need

to purchase more client licenses.

Lesson 2: Using the ADO.NET Connected Classes

307

The following code snippet shows how MARS can be used to perform the nested que

ries for the author list and the total of the royalties:

'VB

Protected Sub Button10_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button10.Click

 Dim lbl As Label = GetLabel(275, 20)

 Dim pubs As ConnectionStringSettings

 pubs = ConfigurationManager.ConnectionStrings("PubsDataMars")

 Dim connection As DbConnection = New SqlConnection()

 connection.ConnectionString = pubs.ConnectionString

 Dim cmd As DbCommand = connection.CreateCommand()

 cmd.CommandType = CommandType.Text

 cmd.CommandText = "SELECT au_id, au_lname, au_fname FROM Authors"

 connection.Open()

 Dim rdr As DbDataReader = cmd.ExecuteReader()

 While rdr.Read()

 Dim salesCmd As DbCommand = connection.CreateCommand()

 salesCmd.CommandType = CommandType.Text

 salesCmd.CommandText = _

"SELECT SUM(royaltyper) FROM TitleAuthor WHERE (au_id = @auId)"

 Dim parm As DbParameter = salesCmd.CreateParameter()

 parm.ParameterName = "@auId"

 parm.Value = rdr("au_id")

 salesCmd.Parameters.Add(parm)

 Dim qtySales As Object = salesCmd.ExecuteScalar()

 lbl.Text += rdr("au_lname").ToString() + ", " + rdr("au_fname").ToString() _

+ ": " + string.Format("{0:C}",qtySales) + "
"

 End While

 connection.Close()

End Sub

//C#

protected void Button10_Click(object sender, EventArgs e)

{

 Label lbl = GetLabel(275, 20);

 ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsDataMars"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

 DbCommand cmd = connection.CreateCommand();

 cmd.CommandType = CommandType.Text;

 cmd.CommandText = "SELECT au_id, au_lname, au_fname FROM Authors";

 connection.Open();

 DbDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())

{

 DbCommand salesCmd = connection.CreateCommand();

 salesCmd.CommandType = CommandType.Text;

 salesCmd.CommandText =

"SELECT SUM(royaltyper) FROM titleauthor WHERE (au_id = @auId)";

 DbParameter parm = salesCmd.CreateParameter();

 parm.ParameterName = "@auId";

308

Chapter 4 Using ADO.NET and XML with ASP.NET

 parm.Value = (string)rdr["au_id"];

 salesCmd.Parameters.Add(parm);

 object qtyRoyalties = salesCmd.ExecuteScalar();

 lbl.Text += (string)rdr["au_lname"] + ", " + (string)rdr["au_fname"]

+ ": " + string.Format("{0:C}",qtyRoyalties) + "
";

}

 connection.Close();

}

Performing Bulk Copy Operations with the SqlBulkCopy Object

The SqlBulkCopy class provides a high-performance method for copying data to a

table in a SQL Server database. The source of the copy is constrained to the overloads

of the WriteToServer method, which can accept an array of DataRow objects, an object

that implements the IDbDataReader interface, a DataTable object, or a DataTable and

DataRowState, as shown in Figure 4-13. This variety of parameters means that you can

retrieve data from most locations.

SqlBulkCopy Class

WriteToServer() Method

Data Store

XML

Document

1. DataRow Array

2. DataTable

3. IDataReader

4. DataTable, DataRowState

SQL Server

Figure 4-13 The SqlBulkCopy object can copy from a variety of sources to a SQL Server table.

NOTE New in ASP.NET 2.0

The SqlBulkCopy object is new in version 2.0 of the .NET Framework.

The following code shows how you can use a SqlBulkCopy object to copy data from the

Store table in the pubs database to the StoreList table:

'VB

Protected Sub Button11_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button11.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim bulkCopy As ConnectionStringSettings

bulkCopy = ConfigurationManager.ConnectionStrings("PubsData")

Dim bulkCopyConnection As DbConnection = New SqlConnection()

bulkCopyConnection.ConnectionString = bulkCopy.ConnectionString

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

Lesson 2: Using the ADO.NET Connected Classes

cmd.CommandText = "SELECT stor_name FROM Stores"

connection.Open()

bulkCopyConnection.Open()

'make sure that table exists and is empty

'in case button is clicked more that once

Dim cleanup as SqlCommand = bulkCopyConnection.CreateCommand()

cleanup.CommandText = _

 "IF EXISTS (SELECT * FROM sys.objects " _

+ " WHERE object_id = OBJECT_ID('dbo.StoreList') " _

+ " AND type in ('U')) " _

+ "DROP TABLE dbo.StoreList " _

 + "CREATE TABLE dbo.StoreList(stor_name varchar(40) NOT NULL)"

cleanup.ExecuteNonQuery()

'do the bulkcopy

Dim rdr As DbDataReader = cmd.ExecuteReader()

Dim bc As New SqlBulkCopy(bulkCopyConnection)

bc.DestinationTableName = "StoreList"

bc.WriteToServer(rdr)

connection.Close()

bulkCopyConnection.Close()

Dim lbl as Label = GetLabel(275,20)

lbl.Text = "Done with bulk copy"

End Sub

//C#

protected void Button11_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

DbConnection connection =

 new SqlConnection(pubs.ConnectionString);

ConnectionStringSettings bulkCopy =

 ConfigurationManager.ConnectionStrings["PubsData"];

SqlConnection bulkCopyConnection =

 new SqlConnection(bulkCopy.ConnectionString);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT stor_name FROM Stores";

connection.Open();

bulkCopyConnection.Open();

//make sure that table exists and is empty

//in case button is clicked more that once

SqlCommand cleanup = bulkCopyConnection.CreateCommand();

cleanup.CommandText =

 "IF EXISTS (SELECT * FROM sys.objects "

+ " WHERE object_id = OBJECT_ID('dbo.StoreList') "

+ " AND type in ('U')) "

+ "DROP TABLE dbo.StoreList "

+ "CREATE TABLE dbo.StoreList(stor_name varchar(40) NOT NULL)";

cleanup.ExecuteNonQuery();

309

310

Chapter 4 Using ADO.NET and XML with ASP.NET

 //do the bulkcopy

 DbDataReader rdr = cmd.ExecuteReader();

SqlBulkCopy bc = new SqlBulkCopy(bulkCopyConnection);

bc.DestinationTableName = "StoreList";

bc.WriteToServer(rdr);

connection.Close();

bulkCopyConnection.Close();

Label lbl = GetLabel(275, 20);

lbl.Text = "Done with bulk copy";

}

You should consider using the IDbDataReader parameter whenever possible to get the

best performance with the least resources used. You can decide how much data

should be copied based on the query that you use. For example, the preceding code

sample retrieved only the store names and could have had a WHERE clause to further

limit the data.

Using the DbDataAdapter Object

The DbDataAdapter object is used to retrieve and update data between a DataTable

and a data store. The DbDataAdapter is derived from the DataAdapter class and is the

base class of the provider-specific DbDataAdapter classes, as shown in Figure 4-14.

DataAdapter

Class

OleDbDataAdapter

Sealed Class

DbDataAdapter

IDbDataAdapter

Component

DbDataAdapter
Abstract Class

DataAdapter

IDataAdapter

IDbDataAdapter

IDataAdapter

ICloneable

OracleDataAdapter

Sealed Class

DbDataAdapter

IDbDataAdapter

IDataAdapter

ICloneable

OdbcDataAdapter

Sealed Class

DbDataAdapter

IDbDataAdapter

IDataAdapter

ICloneable

SqlDataAdapter

Sealed Class

DbDataAdapter

IDbDataAdapter

IDataAdapter

ICloneable

IDataAdapter

ICloneable

Figure 4-14 The DbDataAdapter hierarchy, showing the DataAdapter base class and the provider-

specific derived classes

Lesson 2: Using the ADO.NET Connected Classes

311

The DbDataAdapter has a SelectCommand property that you use when retrieving the

data. The SelectCommand must contain a valid DbCommand object, which must have

a valid connection.

The DbDataAdapter also has InsertCommand, UpdateCommand, and DeleteCommand

properties, which can optionally contain DbCommand objects to send DataTable

changes to the data store. You don’t need to create these command objects if you only

need to read data from the data store, but if you create one of these latter three com

mands, you must create all four of them.

Using the Fill Method The Fill method moves data from the data store to the Data-

Table object that you pass into this method. The Fill method has several overloads,

some of which accept only a DataSet as a parameter. When a DataSet is passed to the

Fill method, a new DataTable object is created in the DataSet if a source DataTable

object is not specified.

The following code snippet shows how a DataTable can be loaded using the Fill

method:

'VB

Protected Sub Button12_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button12.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As SqlCommand = CType(connection.CreateCommand(), SqlCommand)

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT pub_id, pub_name FROM publishers"

Dim pubsDataSet As New DataSet("Pubs")

Dim da As New SqlDataAdapter(cmd)

da.Fill(pubsDataSet, "publishers")

Dim gv as GridView = GetGridView(275,20)

gv.DataSource = pubsDataSet

gv.DataMember = "publishers"

gv.DataBind()

End Sub

//C#

protected void Button12_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

SqlCommand cmd = (SqlCommand)connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT pub_id, pub_name FROM Publishers";

312

Chapter 4 Using ADO.NET and XML with ASP.NET

SqlDataAdapter da = new SqlDataAdapter(cmd);

DataSet pubsDataSet = new DataSet("Pubs");

da.Fill(pubsDataSet, "publishers");

GridView gv = GetGridView(275, 20);

gv.DataSource = pubsDataSet;

gv.DataMember = "publishers";

gv.DataBind();

}

Saving Changes to the Database Using the Update Method T h e Up d a t e m e t h o d

retrieves the changes from a DataTable object and executes the appropriate InsertCom

mand, UpdateCommand, or DeleteCommand to send each change to the data store on

a row-by-row basis. The Update method retrieves the DataRow objects that have been

changed by looking at the RowState property of each row. If the RowState is anything

but Unchanged, the Update method sends the change to the database.

For the Update method to work, all four commands must be assigned to the DbData-

Adapter. Normally, this means creating individual DbCommand objects for each com

mand. You can easily create the commands by using the DbDataAdapter configuration

wizard, which starts when a DbDataAdapter is dropped onto the form. The wizard can

generate stored procedures for all four commands.

Another way to populate the DbDataAdapter object’s commands is to use the DbCom

mandBuilder object. This object creates the InsertCommand, UpdateCommand, and

DeleteCommand as long as a valid SelectCommand exists. The DbCommandBuilder is

great for specific changes and demos, but it’s generally better to use stored procedures

for all database access to eliminate security risk from SQL injection attacks. The fol

lowing code demonstrates a simple update to the database using the SqlDataAdapter,

which is the SQL Server–specific version of the DbDataAdapter:

'VB

Protected Sub Button13_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button13.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As SqlCommand = _

 CType(connection.CreateCommand(), SqlCommand)

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT * FROM publishers"

Dim pubsDataSet As New DataSet("Pubs")

Dim da As New SqlDataAdapter(cmd)

Dim bldr As New SqlCommandBuilder(da)

da.Fill(pubsDataSet, "publishers")

Lesson 2: Using the ADO.NET Connected Classes

313

'Modify data here - added time to assure change

pubsDataSet.Tables("publishers").Rows(0)("pub_name") _

 = "Hello" + DateTime.Now.ToLongTimeString()

'Add a row - use minutes and seconds for id

pubsDataSet.Tables("publishers").Rows.Add(_

 "99" + DateTime.Now.Second.ToString(), _

 "Tailspin Toys", "Paris", Nothing, "France")

da.Update(pubsDataSet, "publishers")

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "Update Complete"

End Sub

//C#

protected void Button13_Click(object sender, EventArgs e)

{

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

SqlCommand cmd = (SqlCommand)connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT * FROM Publishers";

SqlDataAdapter da = new SqlDataAdapter(cmd);

DataSet pubsDataSet = new DataSet("Pubs");

SqlCommandBuilder bldr = new SqlCommandBuilder(da);

da.Fill(pubsDataSet, "publishers");

//Modify data here - added time to assure change

pubsDataSet.Tables["publishers"].Rows[0]["pub_name"]

 = "Hello" + DateTime.Now.ToLongTimeString();

//Add a row - use seconds in id

pubsDataSet.Tables["publishers"].Rows.Add(

 "99" + DateTime.Now.Second.ToString(),

 "Tailspin Toys", "Paris", null, "France");

da.Update(pubsDataSet, "publishers");

Label lbl = GetLabel(275, 20);

lbl.Text = "Update Complete";

}

Saving Changes to the Database in Batches One way to increase update performance

is to send the changes to the database server in batches instead of sending changes on

a row-by-row basis. You can do this by assigning a value to the DbDataAdapter object’s

UpdateBatchSize property. This property defaults to 1, which causes each change to be

sent to the server on a row-by-row basis. Setting the value to 0 instructs the DbData-

Adapter object to create the largest possible batch size for changes, or you can set the

value to the number of changes you want to send to the server in each batch. Setting

the UpdateBatchSize to a number greater than the number of changes that need to be

sent is equivalent to setting it to 0.

314

Chapter 4 Using ADO.NET and XML with ASP.NET

NOTE New in ASP.NET 2.0

The UpdateBatchSize property is new in version 2.0 of the .NET Framework.

You can confirm that the changes are being sent to the database server in batches by

adding a RowUpdated event to the DbDataAdapter object. The event handler method

exposes the number of rows affected in the last batch. When the UpdateBatchSize is

set to 1, the RecordsAffected property is always 1. In the following code snippet, the

publishers’ table contains eight rows. The pubsDataSet is filled, and then the

pub_name field is modified on all eight rows. Before the Update method is executed,

the UpdateBatchSize is changed to 3. When the Update method is executed, the

changes are sent to the database as a batch of three changes, another batch of three

changes, and finally, a batch of two changes. This code contains a RowUpdated event

handler to collect batch information, which is displayed after the Update method is

executed.

'VB

Public WithEvents da As New SqlDataAdapter()

Public sb As New System.Text.StringBuilder()

Private Sub rowUpdated(ByVal sender As Object, _

 ByVal e As SqlRowUpdatedEventArgs) Handles da.RowUpdated

sb.Append("Rows: " & e.RecordsAffected.ToString() & vbCrLf)

End Sub

Protected Sub Button14_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button14.Click

Dim pubs As ConnectionStringSettings

pubs = ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As DbConnection = New SqlConnection()

connection.ConnectionString = pubs.ConnectionString

Dim cmd As SqlCommand = _

 CType(connection.CreateCommand(), SqlCommand)

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT * FROM publishers"

Dim pubsDataSet As New DataSet("Pubs")

da.SelectCommand = cmd

Dim bldr As New SqlCommandBuilder(da)

da.Fill(pubsDataSet, "publishers")

'Modify data here

For Each dr As DataRow In pubsDataSet.Tables("publishers").Rows

 dr("pub_name") = "Updated Toys " _

+ DateTime.Now.Minute.ToString() _

+ DateTime.Now.Second.ToString()

Next

da.UpdateBatchSize = 3

da.Update(pubsDataSet, "publishers")

Lesson 2: Using the ADO.NET Connected Classes

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = sb.ToString()

End Sub

//C#

public SqlDataAdapter da = new SqlDataAdapter();

public System.Text.StringBuilder sb = new System.Text.StringBuilder();

private void rowUpdated(object sender, SqlRowUpdatedEventArgs e)

{

sb.Append("Rows: " + e.RecordsAffected.ToString() + "\r\n");

}

protected void Button14_Click(object sender, EventArgs e)

{

//event subscription is normally placed in constructor but is here

 //to encapsulate the sample

da.RowUpdated += new SqlRowUpdatedEventHandler(rowUpdated);

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection = new SqlConnection(pubs.ConnectionString);

SqlCommand cmd = (SqlCommand)connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT * FROM Publishers";

da.SelectCommand = cmd;

DataSet pubsDataSet = new DataSet("Pubs");

SqlCommandBuilder bldr = new SqlCommandBuilder(da);

da.Fill(pubsDataSet, "publishers");

//Modify data here

foreach (DataRow dr in pubsDataSet.Tables["publishers"].Rows)

{

 dr["pub_name"] = "Updated Toys "

+ DateTime.Now.Minute.ToString()

+ DateTime.Now.Second.ToString();

}

da.UpdateBatchSize = 3;

da.Update(pubsDataSet, "publishers");

//if event subscription is in the contructor, no need to

//remove it here....

da.RowUpdated -= new SqlRowUpdatedEventHandler(rowUpdated);

Label lbl = GetLabel(275, 20);

lbl.Text = sb.ToString();

}

315

Using the OleDbDataAdapter Object to Access ADO Recordset or Record The OleDb-

DataAdapter is similar to the SqlDataAdapter; however, the OleDbDataAdapter provides

a unique feature: the ability to read a legacy ADO Recordset or Record into a DataSet.

Consider the following code snippet:

316

Chapter 4 Using ADO.NET and XML with ASP.NET

'VB

Protected Sub Button7_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button7.Click

Dim da as new OleDbDataAdapter()

Dim ds as new DataSet()

' set reference to adodb.dll and

' add using ADODB

Dim adoCn as new ADODB.Connection()

Dim adoRs as new ADODB.Recordset()

adoCn.Open(_

 "Provider=Microsoft.Jet.OLEDB.4.0;" _

+ "Data Source=" _

 + MapPath("App_Data/Northwind.mdb") + ";" _

+ "Persist Security Info=False", "", "", -1)

 adoRs.Open("SELECT * FROM Customers", _

 adoCn, ADODB.CursorTypeEnum.adOpenForwardOnly, _

 ADODB.LockTypeEnum.adLockReadOnly, 1)

da.Fill(ds, adoRs, "Customers")

adoCn.Close()

Dim gv as GridView = GetGridView(275, 20)

gv.DataSource = ds

gv.DataMember = "Customers"

gv.DataBind()

End Sub

//C#

protected void Button7_Click(object sender, EventArgs e)

{

OleDbDataAdapter da = new OleDbDataAdapter();

DataSet ds = new DataSet();

// set reference to adodb.dll and

// add using ADODB

ADODB.Connection adoCn = new ADODB.Connection();

ADODB.Recordset adoRs = new ADODB.Recordset();

adoCn.Open(

 "Provider=Microsoft.Jet.OLEDB.4.0;"

 + "Data Source="

+ MapPath("App_Data/Northwind.mdb") + ";"

+ "Persist Security Info=False", "", "", -1);

 adoRs.Open("SELECT * FROM Customers",

 adoCn, ADODB.CursorTypeEnum.adOpenForwardOnly,

 ADODB.LockTypeEnum.adLockReadOnly, 1);

da.Fill(ds, adoRs, "Customers");

adoCn.Close();

GridView gv = GetGridView(275, 20);

gv.DataSource = ds;

gv.DataMember = "Customers";

gv.DataBind();

}

Lesson 2: Using the ADO.NET Connected Classes

317

This code sample is opening a connection to a Microsoft Access database called north-

wind.mdb and retrieving the Customers table into an ADODB.Recordset. The record-

set is passed to the Fill method on the OleDbDataAdapter, which uses the recordset as

the source when filling the DataSet object.

The primary purpose of this feature is to support legacy data, which can be useful in

situations where you have a legacy ADODB.Recordset and you want to display it using

one of the .NET GUI controls, or if you want to save the data to a data store using one

of the .NET providers.

Using the DbProviderFactory Classes

There are many reasons for writing an application that does not require database

provider-specific code. A company might want the flexibility to upgrade from one

database product to another, such as moving from Microsoft Access to SQL Server.

A company might have a retail application that must allow connectivity to any data

source.

ADO.NET provides base classes that the provider-specific classes inherit from, as

shown earlier in Table 4-1. The .NET Framework supports only single inheritance,

so this approach has limitations if you want to create your own base class, but for

classes that will expand, providing base class inheritance is better than providing

interface implementation. Note that interfaces are still provided for backward

compatibility.

NOTE New in ASP.NET 2.0

The provider factory objects are new in version 2.0 of the .NET Framework.

The DbProviderFactory lets you create a factory object that is responsible for creating

the appropriate provider objects. Each provider must supply a subclass of DbProvider-

Factory that can be used to create instances of its provider classes. For example, you

can use the SqlClientFactory to create instances of any of the SQL Server classes. Figure

4-15 shows the DbProviderFactory class hierarchy.

318

Chapter 4 Using ADO.NET and XML with ASP.NET

DbProviderFactory

Abstract Class

Properties

CanCreateDataSourceEnumerator

Methods

CreateCommand

CreateCommandBuilder

CreateConnection

CreateConnectionStringBuilder

CreateDataAdapter

CreateDataSourceEnumerator

CreateParameter

CreatePermission

DbProviderFactory

SqlClientFactory

Sealed Class

 DbProviderFactory

Fields

Instance

OleDbFactory OdbcFactory

Sealed Class Sealed Class

OracleClientFactory

Sealed Class

 DbProviderFactory

Fields

Instance

 DbProviderFactory

Fields

Instance

 DbProviderFactory

Fields

Instance

Figure 4-15 The DbProviderFactory and the SqlClientFactory classes.

The provider factory classes are implemented as singletons, where each class provides

an Instance property that is used to access the methods and properties shown in Fig

ure 4-15. For example, you can use the following code to create a new connection

using the SqlClientFactory:

'VB

'Get the singleton instance

Dim factory As DbProviderFactory = SqlClientFactory.Instance

Public Function GetProviderConnection() As DbConnection

Dim connection As DbConnection = factory.CreateConnection()

connection.ConnectionString = "Data Source=.\SQLEXPRESS;" _

 & "AttachDbFilename=|DataDirectory|PUBS.MDF;" _

 & "Integrated Security=True;User Instance=True"

Return connection

End Function

//C#

//Get the singleton instance

Lesson 2: Using the ADO.NET Connected Classes

319

DbProviderFactory factory = SqlClientFactory.Instance;

public DbConnection GetProviderConnection()

{

DbConnection connection = factory.CreateConnection();

connection.ConnectionString = @"Data Source=.\SQLEXPRESS;"

+ "AttachDbFilename=|DataDirectory|PUBS.MDF;"

+ "Integrated Security=True;User Instance=True";

return connection;

}

Using the DbProviderFactories Class

To query for the list of available factories, you can use the DbProviderFactories class.

This class is a factory for obtaining factories. It contains a method called GetFactory-

Classes that returns a DataTable that is populated with information describing all

available providers. Retrieving the list of providers can be easily demonstrated by

using the following code snippet:

'VB

Dim providersList As DataTable = Nothing

Protected Sub Button16_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button16.Click

providersList = DbProviderFactories.GetFactoryClasses()

Dim gv As GridView = GetGridView(275, 20)

gv.Width = 400

gv.DataSource = providersList

gv.DataBind()

End Sub

//C#

DataTable providersList = null;

protected void Button16_Click(object sender, EventArgs e)

{

providersList = DbProviderFactories.GetFactoryClasses();

GridView gv = GetGridView(275, 20);

gv.Width = 400;

gv.DataSource = providersList;

gv.DataBind();

}

When the Web page is run and the button is clicked, the screen shown in Figure 4-16

is displayed.

320

Chapter 4 Using ADO.NET and XML with ASP.NET

Figure 4-16 The available provider factory classes on an example computer.

The invariant column contains a string that you can use to retrieve a specific provider.

The name and description provide information that you can use to display a friendly

provider list to an application user. The listed assembly names are fully qualified. Any

provider on the list must be located within the application’s probing path. This means

that the .NET runtime must be able to locate the provider. In most situations, the pro

vider library is installed in the GAC or the application folder.

The provider list shown in Figure 4-16 is from the Machine.config file, which, by

default, contains the following provider information within the <configuration> root

element:

<system.data>

 <DbProviderFactories>

 <add name="Odbc Data Provider"

 invariant="System.Data.Odbc"

 description=".Net Framework Data Provider for Odbc"

 type="System.Data.Odbc.OdbcFactory, System.Data,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

 <add name="OleDb Data Provider"

 invariant="System.Data.OleDb"

Lesson 2: Using the ADO.NET Connected Classes

 description=".Net Framework Data Provider for OleDb"

 type="System.Data.OleDb.OleDbFactory, System.Data,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

 <add name="OracleClient Data Provider"

 invariant="System.Data.OracleClient"

 description=".Net Framework Data Provider for Oracle"

type="System.Data.OracleClient.OracleClientFactory,

 System.Data.OracleClient, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" />

 <add name="SqlClient Data Provider"

 invariant="System.Data.SqlClient"

 description=".Net Framework Data Provider for SqlServer"

 type="System.Data.SqlClient.SqlClientFactory, System.Data,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

 <add name="SQL Server CE Data Provider"

 invariant="Microsoft.SqlServerCe.Client"

 description=".NET Framework Data Provider for

Microsoft SQL Server 2005 Mobile Edition"

 type="Microsoft.SqlServerCe.Client.SqlCeClientFactory,

Microsoft.SqlServerCe.Client, Version=9.0.242.0,

Culture=neutral, PublicKeyToken=89845dcd8080cc91" />

 </DbProviderFactories>

</system.data>

321

Notice that DbDatabaseProviderFactories uses the <add> element. By using the <add>

element, you can add more providers to the Machine.config file or the application’s

configuration file. You can also use the <remove> tag to remove providers from the

default machine.config list. For example, the following is a sample App.config file that

removes the ODBC provider from the defaults defined in Machine.config:

<configuration>

 <system.data>

 <DbProviderFactories>

<remove invariant="System.Data.Odbc" />

 </DbProviderFactories>

 </system.data>

</configuration>

If very few specific providers (such as SQL Server and Oracle) are required, you can

use the <clear> element to remove all of the providers in the Machine.config file and

then use the <add> element to add the desired providers back into the list. The follow

ing example clears the provider list and adds the SQL Server provider back into the

list:

<configuration>

 <system.data>

 <DbProviderFactories>

<clear/>

<add name="SqlClient Data Provider"

322

Chapter 4 Using ADO.NET and XML with ASP.NET

 invariant="System.Data.SqlClient"

 description=".Net Framework Data Provider for SqlServer"

 type="System.Data.SqlClient.SqlClientFactory, System.Data,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" />

 </DbProviderFactories>

 </system.data>

</configuration>

Enumerating Data Sources

Sometimes you want to display a list of the available data sources for a given provider.

For example, if an application allows data to be read from one SQL Server and written

to a different SQL Server, it might require a dialog box for selecting from a list of avail

able SQL Servers for the source and destination servers. The following code snippet

shows how to enumerate the data sources:

'VB

Protected Sub Button17_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button17.Click

Dim factory as DbProviderFactory = _

 DbProviderFactories.GetFactory("System.Data.SqlClient")

 'get SQL Server instances

Dim sources as DataTable = _

 factory.CreateDataSourceEnumerator().GetDataSources()

Dim gv As GridView = GetGridView(275, 20)

gv.DataSource = sources

gv.DataBind()

End Sub

//C#

protected void Button17_Click(object sender, EventArgs e)

{

DbProviderFactory factory =

 DbProviderFactories.GetFactory("System.Data.SqlClient");

//get SQL Server instances

DataTable sources =

 factory.CreateDataSourceEnumerator().GetDataSources();

GridView gv = GetGridView(275, 20);

gv.DataSource = sources;

gv.DataBind();

}

Catching Provider Exceptions

All provider specific exceptions inherit from a common base class called DbException.

When working with a provider-neutral coding model, your try/catch block can simply

catch DbException generically instead of trying to catch each provider-specific exception.

Lesson 2: Using the ADO.NET Connected Classes

323

The DbException object contains a Data collection property that contains information

about the error; you can also use the Message property to retrieve information about

the error. In the following example, a loop is created to show how you might want to

retry a command on error. This code also demonstrates the use of the try/catch block

and the using block.

'VB

Protected Sub Button19_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button19.Click

Dim lbl As Label = GetLabel(275, 20)

Dim maxTries As Integer = 3

For i As Integer = 1 To maxTries

 Dim pubs As ConnectionStringSettings = _

 ConfigurationManager.ConnectionStrings("PubsData")

 Dim connection As DbConnection = _

 New SqlConnection(pubs.ConnectionString)

 Dim cmd As DbCommand = connection.CreateCommand()

 Try

 Using (connection)

Using (cmd)

 cmd.CommandType = CommandType.Text

 'choose the SQL statement; one causes error, other does not.

 cmd.CommandText = "RaisError('Custom Error',19,1) With Log"

 'cmd.CommandText = "Select @@Version"

 connection.Open()

 cmd.ExecuteNonQuery()

End Using

 End Using

 lbl.Text += "Command Executed Successfully
"

 Return

 Catch xcp As DbException

 lbl.Text += xcp.Message + "
"

 for each item as DictionaryEntry in xcp.Data

 lbl.Text += " " + item.Key.ToString()

 lbl.Text += " = " + item.Value.ToString()

 lbl.Text += "
"

 Next

 End Try

Next

lbl.Text += "Max Tries Exceeded
"

End Sub

//C#

protected void Button19_Click(object sender, EventArgs e)

{

Label lbl = GetLabel(275, 20);

int maxTries = 3;

for (int i = 0; i < maxTries; i++)

{

 ConnectionStringSettings pubs =

324

Chapter 4 Using ADO.NET and XML with ASP.NET

 ConfigurationManager.ConnectionStrings["PubsData"];

 DbConnection connection =

 new SqlConnection(pubs.ConnectionString);

 DbCommand cmd = connection.CreateCommand();

 try

{

 using (connection)

{

using (cmd)

{

 cmd.CommandType = CommandType.Text;

 //choose the SQL statement; one causes error, other does not.

 cmd.CommandText = "RaisError('Custom Error',19,1) With Log";

 //cmd.CommandText = "Select @@Version";

 connection.Open();

 cmd.ExecuteNonQuery();

}

}

 lbl.Text += "Command Executed Successfully
";

 return;

 }

 catch (DbException xcp)

{

 lbl.Text += xcp.Message + "
";

 foreach (DictionaryEntry item in xcp.Data)

{

lbl.Text += " " + item.Key.ToString();

lbl.Text += " = " + item.Value.ToString();

lbl.Text += "
";

}

}

}

lbl.Text += "Max Tries Exceeded
";

}

Detecting Information with the Connection Event The connection classes contain an

event called InfoMessage that can be used to retrieve general and error information

from the database. You can use the InfoMessage event to view the results of SQL Print

statements and any messages that are available as a result of the SQL RaiseError state

ment, regardless of the error level.

The following code snippet shows how this can be used to display information in a

Label and a GridView by subscribing to the InfoMessage event when running a query

that has informational messages:

'VB

Protected Sub Button18_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button18.Click

Lesson 2: Using the ADO.NET Connected Classes

Dim errLabel As Label = GetLabel(275, 20)

Dim errGrid As GridView = GetGridView(275, 100)

Dim pubs As ConnectionStringSettings = _

 ConfigurationManager.ConnectionStrings("PubsData")

Dim connection As New SqlConnection(pubs.ConnectionString)

AddHandler connection.InfoMessage, AddressOf connection_InfoMessage

Dim cmd As DbCommand = connection.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "SELECT job_id, job_desc FROM Jobs;" _

+ "Print 'Hello Everyone';" _

+ "Raiserror('Info Error Occured', 10,1)" _

+ "Print GetDate()"

connection.Open()

Dim rdr As DbDataReader = cmd.ExecuteReader()

Dim publishers As New DataTable()

publishers.Load(rdr, LoadOption.Upsert)

connection.Close()

Dim gv As GridView = GetGridView(275, 200)

gv.DataSource = publishers

gv.DataBind()

errLabel.Text = errMessage

errGrid.DataSource = errCollection

errGrid.DataBind()

End Sub

Private errMessage As String = String.Empty

Private errCollection As New List(Of SqlError)

Private Sub connection_InfoMessage(ByVal sender As Object, _

 ByVal e As SqlInfoMessageEventArgs)

errMessage += "Message: " + e.Message + "
"

For Each err As SqlError In e.Errors

 errCollection.Add(err)

Next

End Sub

//C#

protected void Button18_Click(object sender, EventArgs e)

{

Label errLabel = GetLabel(275, 20);

GridView errGrid = GetGridView(275, 100);

ConnectionStringSettings pubs =

 ConfigurationManager.ConnectionStrings["PubsData"];

SqlConnection connection = new SqlConnection(pubs.ConnectionString);

connection.InfoMessage +=

 new SqlInfoMessageEventHandler(connection_InfoMessage);

DbCommand cmd = connection.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "SELECT job_id, job_desc FROM Jobs;"

+ "Print 'Hello Everyone';"

+ "Raiserror('Info Error Occured', 10,1)"

+ "Print GetDate()";

connection.Open();

325

326

Chapter 4 Using ADO.NET and XML with ASP.NET

 DbDataReader rdr = cmd.ExecuteReader();

DataTable publishers = new DataTable();

publishers.Load(rdr, LoadOption.Upsert);

connection.Close();

GridView gv = GetGridView(275, 200);

gv.DataSource = publishers;

gv.DataBind();

errLabel.Text = errMessage;

errGrid.DataSource = errCollection;

errGrid.DataBind();

}

private string errMessage = string.Empty;

private List<SqlError> errCollection = new List<SqlError>();

void connection_InfoMessage(object sender, SqlInfoMessageEventArgs e)

{

errMessage += "Message: " + e.Message + "
";

 foreach(SqlError err in e.Errors) errCollection.Add(err);

}

Using the ADO.NET Transaction Object

A transaction is an atomic unit of work that must be completed in its entirety. The

transaction succeeds if it is committed and fails if it is aborted. Transactions have four

essential properties: atomicity, consistency, isolation, and durability (known as the

ACID properties).

■ Atomicity The work cannot be broken into smaller parts. Although a transac

tion might contain many SQL statements, it must be run as an all-or-nothing

proposition, which means that, if a transaction is only partially complete when

an error occurs, the work reverts to its state prior to the start of the transaction.

■ Consistency A transaction must operate on a consistent view of the data and

must also leave the data in a consistent state. Any work in progress must not be

visible to other transactions until the transaction has been committed.

■ Isolation A transaction should appear to be running by itself, the effects of other

ongoing transactions must be invisible to this transaction, and the effects of this

transaction must be invisible to other ongoing transactions.

■ Durability When a transaction is committed, it must be persisted so it is not lost

in the event of a power failure or other system failure. Only committed transac

tions are recovered during power-up and crash recovery; uncommitted work is

rolled back.

Lesson 2: Using the ADO.NET Connected Classes

327

You can use the DbConnection object with the BeginTransaction method, which creates

a DbTransaction object. The following code snippet shows how this is done:

'VB

Protected Sub Button20_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button20.Click

Dim lbl As Label = GetLabel(275, 20)

Dim cnSetting As ConnectionStringSettings = _

 ConfigurationManager.ConnectionStrings("PubsData")

Using cn As New SqlConnection()

 cn.ConnectionString = cnSetting.ConnectionString

 cn.Open()

 Using tran As SqlTransaction = cn.BeginTransaction()

Try

'work code here

Using cmd As SqlCommand = cn.CreateCommand()

 cmd.Transaction = tran

 cmd.CommandText = "UPDATE jobs SET min_lvl=min_lvl * 1.1"

 Dim count As Integer = CInt(cmd.ExecuteNonQuery())

lbl.Text = "Count = " + count.ToString()

End Using

'if we made it this far, commit

tran.Commit()

 Catch xcp As Exception

tran.Rollback()

'cleanup code

lbl.Text = xcp.Message

 End Try

 End Using

End Using

End Sub

//C#

protected void Button20_Click(object sender, EventArgs e)

{

Label lbl = GetLabel(275, 20);

ConnectionStringSettings cnSetting =

 ConfigurationManager.ConnectionStrings["PubsData"];

using (SqlConnection cn = new SqlConnection())

{

 cn.ConnectionString = cnSetting.ConnectionString;

 cn.Open();

 using (SqlTransaction tran = cn.BeginTransaction())

{

try

{

//work code here

using (SqlCommand cmd = cn.CreateCommand())

{

 cmd.Transaction = tran;

 cmd.CommandText = "UPDATE jobs SET min_lvl=min_lvl * 1.1";

 int count = (int)cmd.ExecuteNonQuery();

328

Chapter 4 Using ADO.NET and XML with ASP.NET

 lbl.Text = "Count = " + count.ToString();

}

//if we made it this far, commit

tran.Commit();

}

 catch (Exception xcp)

{

tran.Rollback();

//cleanup code

lbl.Text = xcp.Message;

}

}

}

}

In this code, a SqlConnection object is created and opened, and the connection object

is used to create a transaction object by executing the BeginTransaction method. The

try block does the work and commits the transaction. If an exception is thrown, the

catch block rolls back the transaction. Also, notice that the SqlCommand object must

have its Transaction property assigned to the connection’s transaction.

The scope of the transaction is limited to the code within the try block, but the trans

action was created by a specific connection object, so the transaction cannot span to

a different Connection object.

Asynchronous Data Access

Asynchronous access to data can greatly improve the performance or perceived per

formance (responsiveness) of your application. With asynchronous access, multiple

commands can be executed simultaneously and notification of command completion

can be accomplished by either polling, using WaitHandles, or delegating.

Synchronous vs. Asynchronous Access

Commands are normally executed synchronously, which causes the command to

―block‖ program execution until the command has completed. Blocking execution

keeps the program from continuing until the command has finished executing. This

simplifies the writing of the code because the developer simply thinks about code exe

cution in a rather procedural, step-by-step fashion, as shown in Figure 4-17. The prob

lem arises with long-running commands, because blocking inhibits the program’s

ability to do other work such as performing additional commands or, more impor

tantly, allowing the user to abort the command.

Client

Synchronous Access

Lesson 2: Using the ADO.NET Connected Classes

SQL Server

329

1. Open Connection

2. Execute Command

5. Process Result

6. More Cool Code...

3. Process Command

4. Return Results

Figure 4-17 Synchronous data access.

Asynchronous command execution does not block program execution because it

takes place on a new thread, which is another path of execution for your code. This

means the original thread can continue executing while the new thread is waiting for

its command to complete, as shown in Figure 4-18. The original thread is free to

repaint the screen or listen for other events, such as button clicks.

Asynchronous Access

Client

1. Open Connection

2. Execute Command

3a. Other Code...

5. Process Result

SQL Server

3b. Process Command

4. Return Results

Figure 4-18 Asynchronous data access.

To demonstrate the difference between synchronous and asynchronous data access,

the following code uses synchronous data access. This code simulates three long-run

ning queries and then places a message in a label on the form.

'VB

Protected Sub Button21_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button21.Click

Dim lbl As Label = GetLabel(275, 20)

Dim dtStart as DateTime = DateTime.Now

Dim ver As String = string.Empty

Dim cnSettings As SqlConnectionStringBuilder

cnSettings = New SqlConnectionStringBuilder(_

 "Data Source=.;" _

 + "Database=PUBS;" _

 + "Integrated Security=True;" _

330

Chapter 4 Using ADO.NET and XML with ASP.NET

 + "Max Pool Size=5")

Using cn1 As SqlConnection = _

 New SqlConnection(cnSettings.ConnectionString)

Using cn2 As SqlConnection = _

 New SqlConnection(cnSettings.ConnectionString)

Using cn3 As SqlConnection = _

 New SqlConnection(cnSettings.ConnectionString)

 Using cmd1 As SqlCommand = cn1.CreateCommand()

 Using cmd2 As SqlCommand = cn2.CreateCommand()

 Using cmd3 As SqlCommand = cn3.CreateCommand()

 cmd1.CommandText = _

"WaitFor Delay '00:00:10' Select '1st Query
'"

 cmd2.CommandText = _

"WaitFor Delay '00:00:10' Select '2nd Query
'"

 cmd3.CommandText = _

"WaitFor Delay '00:00:10' Select '3rd Query
'"

 cn1.Open()

 Dim dr1 as SqlDataReader = cmd1.ExecuteReader()

 While dr1.Read()

ver += dr1(0).ToString()

 End While

 dr1.Close()

 cn2.Open()

 Dim dr2 as SqlDataReader = cmd2.ExecuteReader()

 While dr2.Read()

ver += dr2(0).ToString()

 End While

 dr2.Close()

 cn3.Open()

 Dim dr3 as SqlDataReader = cmd3.ExecuteReader()

 While dr3.Read()

ver += dr3(0).ToString()

 End While

 dr3.Close()

 End Using

 End Using

 End Using

End Using

End Using

End Using

Dim dtEnd as DateTime = DateTime.Now

ver += "Running Time: " _

+ (dtEnd - dtStart).ToString() + " Seconds
"

lbl.Text = ver

End Sub

//C#

Lesson 2: Using the ADO.NET Connected Classes

protected void Button21_Click(object sender, EventArgs e)

{

Label lbl = GetLabel(275, 20);

 DateTime dtStart = DateTime.Now;

string ver = string.Empty;

SqlConnectionStringBuilder cnSettings =

 new SqlConnectionStringBuilder(

"Data Source=.;"

+ "Database=PUBS;"

 + "Integrated Security=True;"

+ "Max Pool Size=5");

using(SqlConnection cn1 =

 new SqlConnection(cnSettings.ConnectionString))

{

using(SqlConnection cn2 =

 new SqlConnection(cnSettings.ConnectionString))

{

using(SqlConnection cn3 =

 new SqlConnection(cnSettings.ConnectionString))

{

 using(SqlCommand cmd1 = cn1.CreateCommand())

{

 using(SqlCommand cmd2 = cn2.CreateCommand())

{

 using(SqlCommand cmd3 = cn3.CreateCommand())

{

 cmd1.CommandText =

"WaitFor Delay '00:00:10' Select '1st Query
'";

 cmd2.CommandText =

"WaitFor Delay '00:00:10' Select '2nd Query
'";

 cmd3.CommandText =

"WaitFor Delay '00:00:10' Select '3rd Query
'";

 cn1.Open();

 SqlDataReader dr1 = cmd1.ExecuteReader();

 while(dr1.Read())

{

ver += dr1[0].ToString();

}

 dr1.Close();

 cn2.Open();

 SqlDataReader dr2 = cmd2.ExecuteReader();

 while(dr2.Read())

{

ver += dr2[0].ToString();

}

 dr2.Close();

 cn3.Open();

 SqlDataReader dr3 = cmd3.ExecuteReader();

 while(dr3.Read())

331

332

Chapter 4 Using ADO.NET and XML with ASP.NET

 {

ver += dr3[0].ToString();

}

 dr3.Close();

}

}

}

}

}

}

DateTime dtEnd = DateTime.Now;

ver += "Running Time: "

+ (dtEnd - dtStart).ToString() + " Seconds
";

lbl.Text = ver;

}

In this code, each of the three queries is run, one at a time. The running time dis

played is approximately 30 seconds.

NOTE New in ASP.NET 2.0

The Asynchronous Processing and async connection string keys are new in version 2.0 of the .NET

Framework.

To use asynchronous code to run these queries, you must set the connection string to

have Asynchronous Processing=true and async=true, or an exception is thrown. Next,

one of the command object’s Begin methods must be executed. The SqlCommand

object provides the BeginExecuteNoQuery, BeginExecuteReader, and BeginExecuteXml-

Reader methods. The following code shows the asynchronous implementation:

'VB

Protected Sub Button22_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button22.Click

 Dim lbl As Label = GetLabel(275, 20)

Dim dtStart as DateTime = DateTime.Now

Dim ver As String = string.Empty

Dim cnSettings As SqlConnectionStringBuilder

cnSettings = New SqlConnectionStringBuilder(_

 "Data Source=.;" _

 + "Database=PUBS;" _

 + "Asynchronous Processing=true;" _

+ "Integrated Security=True;" _

+ "Max Pool Size=5")

Using cn1 As SqlConnection = _

 New SqlConnection(cnSettings.ConnectionString)

Using cn2 As SqlConnection = _

 New SqlConnection(cnSettings.ConnectionString)

Using cn3 As SqlConnection = _

Lesson 2: Using the ADO.NET Connected Classes

333

 New SqlConnection(cnSettings.ConnectionString)

 Using cmd1 As SqlCommand = cn1.CreateCommand()

 Using cmd2 As SqlCommand = cn2.CreateCommand()

 Using cmd3 As SqlCommand = cn3.CreateCommand()

 cmd1.CommandText = _

"WaitFor Delay '00:00:10' Select '1st Query
'"

 cmd2.CommandText = _

"WaitFor Delay '00:00:10' Select '2nd Query
'"

 cmd3.CommandText = _

"WaitFor Delay '00:00:10' Select '3rd Query
'"

 cn1.Open()

 cn2.Open()

 cn3.Open()

 Dim ar1 as IAsyncResult = cmd1.BeginExecuteReader()

 Dim ar2 as IAsyncResult = cmd2.BeginExecuteReader()

 Dim ar3 as IAsyncResult = cmd3.BeginExecuteReader()

 ar1.AsyncWaitHandle.WaitOne()

 Dim dr1 as SqlDataReader = cmd1.EndExecuteReader(ar1)

 While dr1.Read()

ver += dr1(0).ToString()

 End While

 dr1.Close()

 ar2.AsyncWaitHandle.WaitOne()

 Dim dr2 as SqlDataReader = cmd2.EndExecuteReader(ar2)

 While dr2.Read()

ver += dr2(0).ToString()

 End While

 dr2.Close()

 ar3.AsyncWaitHandle.WaitOne()

 Dim dr3 as SqlDataReader = cmd3.EndExecuteReader(ar3)

 While dr3.Read()

ver += dr3(0).ToString()

 End While

 dr3.Close()

 End Using

 End Using

 End Using

End Using

End Using

End Using

Dim dtEnd as DateTime = DateTime.Now

ver += "Running Time: " _

+ (dtEnd - dtStart).ToString() + " Seconds
"

lbl.Text = ver

End Sub

334

Chapter 4 Using ADO.NET and XML with ASP.NET

//C#

protected void Button22_Click(object sender, EventArgs e)

{

Label lbl = GetLabel(275, 20);

 DateTime dtStart = DateTime.Now;

string ver = string.Empty;

SqlConnectionStringBuilder cnSettings =

 new SqlConnectionStringBuilder(

"Data Source=.;"

+ "Database=PUBS;"

 + "Asynchronous Processing=true;"

+ "Integrated Security=True;"

+ "Max Pool Size=5");

using (SqlConnection cn1 =

 new SqlConnection(cnSettings.ConnectionString))

{

using (SqlConnection cn2 =

 new SqlConnection(cnSettings.ConnectionString))

{

using (SqlConnection cn3 =

 new SqlConnection(cnSettings.ConnectionString))

{

 using (SqlCommand cmd1 = cn1.CreateCommand())

{

 using (SqlCommand cmd2 = cn2.CreateCommand())

{

 using (SqlCommand cmd3 = cn3.CreateCommand())

{

 cmd1.CommandText =

"WaitFor Delay '00:00:10' Select '1st Query
'";

 cmd2.CommandText =

"WaitFor Delay '00:00:10' Select '2nd Query
'";

 cmd3.CommandText =

"WaitFor Delay '00:00:10' Select '3rd Query
'";

 cn1.Open();

 cn2.Open();

 cn3.Open();

 IAsyncResult ar1 = cmd1.BeginExecuteReader();

 IAsyncResult ar2 = cmd2.BeginExecuteReader();

 IAsyncResult ar3 = cmd3.BeginExecuteReader();

 ar1.AsyncWaitHandle.WaitOne();

 SqlDataReader dr1 = cmd1.EndExecuteReader(ar1);

 while (dr1.Read())

{

ver += dr1[0].ToString();

}

 dr1.Close();

 ar2.AsyncWaitHandle.WaitOne();

 SqlDataReader dr2 = cmd2.EndExecuteReader(ar2);

 while (dr2.Read())

 {

}

ver += dr2[0].ToString();

Lesson 2: Using the ADO.NET Connected Classes

335

}

}

}

}

}

}

 dr2.Close();

 ar3.AsyncWaitHandle.WaitOne();

 SqlDataReader dr3 = cmd3.EndExecuteReader(ar3);

 while (dr3.Read())

{

ver += dr3[0].ToString();

}

 dr3.Close();

}

DateTime dtEnd = DateTime.Now;

ver += "Running Time: "

+ (dtEnd - dtStart).ToString() + " Seconds
";

lbl.Text = ver;

MORE INFO Asynchronous command execution

The following Microsoft link provides more information about asynchronous command execution in

ADO.NET 2.0:

http://msdn.microsoft.com/data/ref/adonet/default.aspx?pull=/library/en-us/dnvs05/html/async2.asp.

As you can see, the label is populated with the result of the queries, and the running

time is only about 10 seconds. The BeginExecuteReader method was used to spawn

each of the new threads. After the threads were spawned, the IAsyncResult object’s

AsyncWaitHandle property was used to wait until the command finished executing.

Storing and Retrieving Binary Large Object (BLOB) Data

When working with data, one challenge is to move large objects between the client

application and the database server. In some scenarios, you might be able to treat

large-object data just like any other data, but in many cases, you might be forced to

look at alternative approaches.

In ADO.NET you can work with BLOBs by using a SqlDataReader object to return a

result set, by using a SqlDataAdapter object to fill a DataTable object, or by using a Sql-

Parameter configured as an output parameter. If an object is so large that you can’t

http://msdn.microsoft.com/data/ref/adonet/default.aspx?pull=/library/en-us/dnvs05/html/async2.asp

336

Chapter 4 Using ADO.NET and XML with ASP.NET

load it without running out of memory, you must deal with it by reading and process

ing it a chunk at a time.

Reading BLOB Data The normal operation of the DataReader object is to read one

row at a time. When the row is available, all of the columns are buffered and available

for you to access in any order.

To access the DataReader object in a stream fashion, you can change the DbCommand

object’s behavior to a sequential stream when you execute the ExecuteReader method.

In this mode, you must get the bytes from the stream in the order of each column that

is being returned, and you can’t retrieve the data more than once. You essentially have

access to the underlying DataReader object’s stream.

To work with chunks of data, you should understand the operation of a stream

object. When you read from a stream, you pass a byte array buffer that the stream

populates. The stream does not have an obligation to populate the buffer, however.

The stream’s only obligation is to populate the buffer with at least one byte if the

stream is not at its end. If the end has been reached, no bytes are read. When you

use slow streams, such as a slow Internet network stream, data might not be avail

able when you attempt to read the stream. In this case, the stream is not at its end,

but no bytes are available, and the thread will block (wait) until one byte has been

received. Based on the stream operation described, you should always perform

stream reading in a loop that continues until no more bytes are read.

The following code sample reads all of the logos from the pub_info table in the pubs

database and stores the logos to a GIF file:

'VB

Protected Sub Button23_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button23.Click

Const pubIdColumn As Integer = 0

Const pubLogoColumn As Integer = 1

'bufferSize must be bigger than oleOffset

Const bufferSize As Integer = 100

Dim buffer(bufferSize) As Byte

Dim byteCountRead As Integer

Dim currentIndex As Long = 0

Dim pubSetting As ConnectionStringSettings = _

 ConfigurationManager.ConnectionStrings("PubsData")

Using cn As New SqlConnection()

 cn.ConnectionString = pubSetting.ConnectionString

 cn.Open()

Lesson 2: Using the ADO.NET Connected Classes

337

 Using cmd As SqlCommand = cn.CreateCommand()

 cmd.CommandText = _

"SELECT pub_id, logo FROM pub_info"

 Dim rdr As SqlDataReader = cmd.ExecuteReader(_

CommandBehavior.SequentialAccess)

 While (rdr.Read())

Dim pubId As String = _

rdr.GetString(pubIdColumn)

Dim fileName As String = MapPath(pubId + ".gif")

' Create a file to hold the output.

Using fs As New FileStream(_

 fileName, FileMode.OpenOrCreate, _

 FileAccess.Write)

 currentIndex = 0

 byteCountRead = _

 CInt(rdr.GetBytes(pubLogoColumn, _

 currentIndex, buffer, 0, bufferSize))

 While (byteCountRead <> 0)

 fs.Write(buffer, 0, byteCountRead)

 currentIndex += byteCountRead

 byteCountRead = _

 CInt(rdr.GetBytes(pubLogoColumn, _

 currentIndex, buffer, 0, bufferSize))

 End While

End Using

 End While

 End Using

End Using

Dim lbl as Label = GetLabel(275,20)

lbl.Text = "Done Writing Logos To Disk"

End Sub

//C#

protected void Button23_Click(object sender, EventArgs e)

{

const int pubIdColumn = 0;

const int pubLogoColumn = 1;

//bufferSize must be bigger than oleOffset

const int bufferSize = 100;

byte[] buffer = new byte[bufferSize];

int byteCountRead;

long currentIndex = 0;

ConnectionStringSettings pubSetting =

 ConfigurationManager.ConnectionStrings["PubsData"];

using (SqlConnection cn = new SqlConnection())

{

 cn.ConnectionString = pubSetting.ConnectionString;

338

Chapter 4 Using ADO.NET and XML with ASP.NET

 cn.Open();

 using (SqlCommand cmd = cn.CreateCommand())

{

 cmd.CommandText =

"SELECT pub_id, logo FROM pub_info";

 SqlDataReader rdr = cmd.ExecuteReader(

CommandBehavior.SequentialAccess);

 while (rdr.Read())

{

string pubId =

rdr.GetString(pubIdColumn);

string fileName = MapPath(pubId + ".gif");

//Create a file to hold the output.

using (FileStream fs = new FileStream(

 fileName, FileMode.OpenOrCreate,

 FileAccess.Write))

{

 currentIndex = 0;

 byteCountRead =

 (int)rdr.GetBytes(pubLogoColumn,

 currentIndex, buffer, 0, bufferSize);

 while (byteCountRead != 0)

{

 fs.Write(buffer, 0, byteCountRead);

 currentIndex += byteCountRead;

 byteCountRead =

 (int)rdr.GetBytes(pubLogoColumn,

 currentIndex, buffer, 0, bufferSize);

}

}

}

}

}

Label lbl = GetLabel(275, 20);

lbl.Text = "Done Writing Logos To Disk";

}

This code gives you the pattern for reading the BLOB and writing it to a file. The Exe

cuteReader method is executed with the CommandBehavior.SequentialAccess parame

ter. Next, a loop runs to read row data, and within the loop and for each row, the

pub_id is read to create the file name. A new FileStream object is created, which opens

the file for writing.

Next, a loop reads bytes into a byte array buffer, and then writes the bytes to the file.

The buffer size is set to 100 bytes, which keeps the amount of data in memory to a

minimum.

Lesson 2: Using the ADO.NET Connected Classes

339

Writing BLOB Data You can write BLOB data to a database by issuing the appropriate

INSERT or UPDATE statement and passing the BLOB value as an input parameter.

You can use the SQL Server UPDATETEXT function to write the BLOB data in chunks

of a specified size. The UPDATETEXT function requires a pointer to the BLOB field

being updated, so the SQL Server TEXTPTR function is first called to get a pointer to

the field of the record to be updated.

The following code example updates the pub_info table, replacing the logo for pub_id

9999 with a new logo from a file:

'VB

Protected Sub Button24_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button24.Click

Const bufferSize As Integer = 100

Dim buffer(bufferSize) As Byte

Dim currentIndex As Long = 0

Dim logoPtr() As Byte

Dim pubString As ConnectionStringSettings = _

 ConfigurationManager.ConnectionStrings("PubsData")

Using cn As New SqlConnection()

 cn.ConnectionString = pubString.ConnectionString

 cn.Open()

 Using cmd As SqlCommand = cn.CreateCommand()

 cmd.CommandText = _

 "SELECT TEXTPTR(Logo) FROM pub_info WHERE pub_id = '9999'"

 logoPtr = CType(cmd.ExecuteScalar(), Byte())

 End Using

 Using cmd As SqlCommand = cn.CreateCommand()

 cmd.CommandText = _

 "UPDATETEXT pub_info.Logo @Pointer @Offset null @Data"

 Dim ptrParm As SqlParameter = _

cmd.Parameters.Add("@Pointer", SqlDbType.Binary, 16)

 ptrParm.Value = logoPtr

 Dim logoParm As SqlParameter = _

cmd.Parameters.Add("@Data", SqlDbType.Image)

 Dim offsetParm As SqlParameter = _

cmd.Parameters.Add("@Offset", SqlDbType.Int)

 offsetParm.Value = 0

 Using fs As New FileStream(MapPath("Logo.gif"), _

 FileMode.Open, FileAccess.Read)

Dim count As Integer = fs.Read(buffer, 0, bufferSize)

While (count <> 0)

 logoParm.Value = buffer

 logoParm.Size = count

 cmd.ExecuteNonQuery()

 currentIndex += count

340

Chapter 4 Using ADO.NET and XML with ASP.NET

 offsetParm.Value = currentIndex

 count = fs.Read(buffer, 0, bufferSize)

End While

 End Using

 End Using

End Using

Dim lbl As Label = GetLabel(275, 20)

lbl.Text = "Done Writing Logos To DB"

End Sub

//C#

protected void Button24_Click(object sender, EventArgs e)

{

const int bufferSize = 100;

byte[] buffer = new byte[bufferSize];

long currentIndex = 0;

byte[] logoPtr;

ConnectionStringSettings pubString =

 ConfigurationManager.ConnectionStrings["PubsData"];

using (SqlConnection cn = new SqlConnection())

{

 cn.ConnectionString = pubString.ConnectionString;

 cn.Open();

 using (SqlCommand cmd = cn.CreateCommand())

{

 cmd.CommandText =

 "SELECT TEXTPTR(Logo) FROM pub_info WHERE pub_id = '9999'";

 logoPtr = (byte[])cmd.ExecuteScalar();

}

 using (SqlCommand cmd = cn.CreateCommand())

{

 cmd.CommandText =

 "UPDATETEXT pub_info.Logo @Pointer @Offset null @Data";

 SqlParameter ptrParm =

cmd.Parameters.Add("@Pointer", SqlDbType.Binary, 16);

 ptrParm.Value = logoPtr;

 SqlParameter logoParm =

cmd.Parameters.Add("@Data", SqlDbType.Image);

 SqlParameter offsetParm =

cmd.Parameters.Add("@Offset", SqlDbType.Int);

 offsetParm.Value = 0;

 using (FileStream fs = new FileStream(MapPath("Logo.gif"),

 FileMode.Open, FileAccess.Read))

{

int count = fs.Read(buffer, 0, bufferSize);

while (count != 0)

{

 logoParm.Value = buffer;

 logoParm.Size = count;

 cmd.ExecuteNonQuery();

 currentIndex += count;

Lesson 2: Using the ADO.NET Connected Classes

341

}

}

}

 offsetParm.Value = currentIndex;

 count = fs.Read(buffer, 0, bufferSize);

}

}

Label lbl = GetLabel(275, 20);

lbl.Text = "Done Writing Logos To DB";

This code opens a connection and retrieves a pointer to the logo that is to be updated

by calling the TEXTPTR function using a SqlCommand object. Then, a new SqlCom

mand object is created, and its CommandText property is set to the following:

"UPDATETEXT pub_info.logo @Pointer @Offset null @Data "

Note that the null parameter defines the quantity of bytes to delete. Passing null indi

cates that all existing data should be deleted. Passing a 0 (zero) indicates that no data

should be deleted; the new data simply overwrites the existing data. (You pass a num

ber if you want to delete some of the data.) The other parameters represent the

pointer to the start of the logo, the current offset to insert data, and the data being

sent to the database.

After the file is opened, a loop starts that reads chunks of the file into the buffer and

then sends the chunks to the database.

Quick Check

1. What two objects are required to send instructions to a SQL Server data

base?

2. What connected object is used to obtain the fastest access to SQL Server

data?

3. When you need to copy large amonts of data to SQL Server, what object

should you use?

Quick Check Answers

1. SqlConnection and SqlCommand objects

2. The SqlDataReader object

3. The SqlBulkCopy object

342

Chapter 4 Using ADO.NET and XML with ASP.NET

Lab: Working with Connected Data

In this lab, you will work with the Visual Studio 2005 GUI to create a Web page that

displays the shippers in the Northwind database and supports inserts, updates, and

deletes.

� Exercise 1: Create the Web Site and the Typed DataSet

In this exercise, you will create the Web site and add the controls to the site.

1. Open Visual Studio 2005 and create a new Web site called WorkingWithCon

nectedData using your preferred programming language. The new Web site will

be created and a Web page called Default.aspx is displayed.

2. In the Solution Explorer, right-click the App_Data folder and select Add Existing

Item. Navigate to the Northwind.mdf file and select it.

3. Drag a DetailsView control onto the Web page and size it wide enough to display

a company name.

4. Click the symbol in the upper-right corner of the DetailsView control to display

the DetailsView Tasks window.

5. Click the Auto Format link and select Professional.

6. Click the Choose Data Source drop-down list and select New Data Source to

start the Data Source Configuration Wizard. For the data source type, select

Database and click OK.

7. On the Choose Your Data Connection screen, click New Connection. The Data-

Source is set to Microsoft SQL Server (SqlClient). Click the Change button and

select the Microsoft SQL Server Database File (SqlClient). In the Database File

Name property, select the Northwind.mdf file that you just added to the

App_Data folder and click Open. Click OK to accept the changes and go back to

the Choose Your Data Connection screen. Click Next to go to the Save the Con

nection String to the Application Configuration File screen.

8. In the Save the Connection String to the Application Configuration File screen,

change the connection string name to nwConnection and click Next.

9. In the Configure Select Statement screen, select the Shippers table from the

Name drop-down list box and click the asterisk (*) to select all rows and columns.

10. While still in the Configure Select Statement screen, click Advanced and select

the options for both Generate Insert, Update, And Delete statements and Use

Optimistic Concurrency. Click OK.

Lesson 2: Using the ADO.NET Connected Classes

343

11. In the Test Query screen, click the Test Query button to see the data. Click Finish

to return to the DetailsView Tasks window.

12. Once you select the Enable Paging, Enable Inserting, Enable Editing, and Enable

Deleting options, configuration of the DetailsView is complete.

13. Run the Web page. Notice that the data was retrieved and displayed.

14. Add a new shipper. Notice that the CompanyName and the Phone fields are dis

played, but the ShipperID field is an autonumber field, so it’s not displayed.

346

Chapter 4 Using ADO.NET and XML with ASP.NET

Lesson 3: Working with XML Data

The .NET Framework provides vast support for XML. The implementation of XML is

focused on performance, reliability, and scalability. The integration of XML with

ADO.NET offers the ability to use XML documents as a data source. This lesson will

cover many of the XML objects that are included in the .NET Framework.

After this lesson, you will be able to:

■ Use the Document Object Model to manage XML data.

■ Use the XmlNamedNodeMap object.

■ Use the XmlNodeList object.

■ Use the XmlReader and XmlWriter objects.

■ Use the XmlNodeReader to read node trees.

■ Validate Data with the XmlValidatingReader.

Estimated lesson time: 60 minutes

Real World

Glenn Johnson

The world has big plans for XML and its supporting technologies, with many

companies already embracing XML, and many companies planning implemen

tations of XML technologies in new applications. The World Wide Web Consor

tium (W3C) envisions the future Web as being completely based on XML

technologies. XML is often the preferred format for data being stored to a file

and for data being sent across the Internet because XML can represent hierarchi

cal data, is text-based, and is not platform dependent.

The XML Document Object Model

The W3C has provided standards that define the structure and provide a standard

programming interface that can be used in a wide variety of environments and appli

cations for XML documents. This is called the Document Object Model (DOM). Classes

that support the DOM are typically capable of random access navigation and modifi

cation of the XML document.

XML Namespace

Lesson 3: Working with XML Data

347

The XML classes are accessible by setting a reference to the System.Xml.dll file and

adding the Imports System.Xml (C# using System.Xml;) directive to the code.

The System.Data.dll file also extends the System.Xml namespace. This is the location

of the XmlDataDocument class. If this class is required, a reference must be set to the

System.Data.dll file.

XML Objects

This section covers the primary XML classes in the .NET Framework. Each of these

classes offers varying degrees of functionality. It’s important to look at each of the

classes in detail in order to make the correct decision on which classes should be

used. Figure 4-19 shows a high-level view of the objects that are covered.

XPathNavigator

XmlDocument

XmlDataDocument

XPathDocument

XslTransform

XSLT

Stylesheet

File

XmlTextReader

XmlTextWriter

XML

Document

File

Read-only stream

XmlReader

XML

Document

File

Figure 4-19 The primary XML objects that are covered in this lesson.

348

Chapter 4 Using ADO.NET and XML with ASP.NET

XmlDocument and XmlDataDocument The XmlDocument and XmlDataDocument

objects are in-memory representations of XML that use the Document Object Model

(DOM) Level 1 and Level 2. These classes can be used to navigate and edit the XML

nodes.

The XmlDataDocument inherits from the XmlDocument and also represents relational

data. The XmlDataDocument can expose its data as a DataSet to provide relational and

nonrelational views of the data. The XmlDataDocument is in the System.Data.dll

assembly.

These classes provide many methods to implement the Level 2 specifications, and

also contain methods to facilitate common operations. The methods are summarized

in Table 4-5. The XmlDocument contains all of the methods for creating XmlElements

and XmlAttributes.

Table 4-5 XmlDocument and XmlDataDocument Methods

Method Description

CreateNodeType Creates an XML node in the document. There are

Create methods for each node type.

CloneNode Creates a duplicate of an XML node. This method

takes a Boolean argument called deep. If deep is false,

only the node is copied. If deep is true, all child

nodes are recursively copied as well.

GetElementByID Locates and returns a single node based on its ID

attribute. Note that this requires a Document Type

Definition (DTD) that identifies an attribute as being

an ID type. An attribute that has the name of ID is

not an ID type by default.

GetElementsByTagName Locates and returns an XmlNodeList containing all

of the descendant elements based on the element

name.

Lesson 3: Working with XML Data

Table 4-5 XmlDocument and XmlDataDocument Methods

Method Description

349

ImportNode

InsertBefore

InsertAfter

Load

LoadXml

Normalize

Imports a node from a different XmlDocument into

this document. The source node remains unmodi

fied in the original XmlDocument. This method takes

a Boolean argument called deep. If deep is false, only

the node is copied. If deep is true, all child nodes are

recursively copied as well.

Inserts an XmlNode immediately before the refer

enced node. If the referenced node is nothing, then

the new node is inserted at the end of the child list.

If the node already exists in the tree, the original

node is removed when the new node is inserted.

Inserts an XmlNode immediately after the referenced

node. If the referenced node is nothing, then the new

node is inserted at the beginning of the child list. If

the node already exists in the tree, the original node

is removed when the new node is inserted.

Loads an XML document from a disk file, Uniform

Resource Locator (URL), or stream.

Loads an XML document from a string.

Assures that there are no adjacent text nodes in the

document. This is like saving the document and

reloading it. This method may be desirable when

text nodes are being programmatically added to an

XmlDocument, and the text nodes are side by side.

Normalizing combines the adjacent text nodes to

produce a single text node.

350

Chapter 4 Using ADO.NET and XML with ASP.NET

Table 4-5 XmlDocument and XmlDataDocument Methods

Method Description

PrependChild Inserts a node at the beginning of the child node list.

If the new node is already in the tree, it is removed

before it is inserted. If the node is an XmlDocument-

Fragment, the complete fragment is added.

ReadNode Loads a node from an XML document using an

XmlTextReader or XmlNodeReader object. The

reader must be on a valid node before executing

this method. The reader reads the opening tag, all

child nodes, and the closing tag of the current ele

ment. This repositions the reader to the next node.

RemoveAll Removes all children and attributes from the current

node.

RemoveChild Removes the referenced child.

ReplaceChild Replaces the referenced child with a new node. If

the new node is already in the tree, it is removed

first.

Save Saves the XML document to a disk file, URL, or stream.

SelectNodes Selects a list of nodes that match the XPath

expression.

SelectSingleNode Selects the first node that matches the XPath

expression.

WriteTo Writes a node to another XML document using an

XmlTextWriter.

WriteContentsTo Writes a node and all of its descendants to another

XML document using an XmlTextWriter.

Lesson 3: Working with XML Data

351

XPathDocument The XPathDocument provides a cached read-only XmlDocument that

can be used for performing quick XPath queries. This constructor for this class

requires a stream object in order to create an instance of this object. The only useful

method that this class exposes is the CreateNavigator method.

XmlConvert The XmlConvert class has many static methods for converting

between XSD data types and common language runtime (CLR) data types. This

class is especially important when working with data sources that allow names

that are not valid XML names. If a column in a database table is called List Price,

trying to create an element or attribute with a space character throws an exception.

Using XmlConvert to encode the name converts the space to _0x0020_, so the XML

element name becomes List_x0020_Price. Later, this name can be decoded using

the XmlConvert.DecodeName method.

The XmlConvert also provides many static methods for converting strings to numeric

values.

XPathNavigator The DocumentNavigator provides efficient navigation of an XmlDoc

ument by providing XPath support for navigation. The XPathNavigator uses a cursor

model and XPath queries to provide read-only random access to the data. The XPath-

Navigator supports XML Stylesheet Language Transforms (XSLT) and can be used as

the input to a transform.

XmlNodeReader The XmlNodeReader provides forward-only access to data in an Xml-

Document or XmlDataDocument. It provides the ability to start at a given node in the

XmlDocument and sequentially read each node.

XmlTextReader The XmlTextWrite provides non-cached, forward-only access to

XML data. It parses XML tokens but makes no attempt to represent the XML doc

ument as a Document Object Model (DOM). The XmlTextReader does not perform

document validation, but it checks the XML data to ensure that it is well formed.

XmlTextWriter The XmlTextWriter provides non-cached, forward-only writing of

XML data to a stream of files, ensuring that the data conforms to the W3C XML 1.0

standard. The XmlTextWriter contains logic for working with namespaces and

resolving namespace conflicts.

XmlValidatingReader Obsolete; replaced by XmlReader.

352

Chapter 4 Using ADO.NET and XML with ASP.NET

XmlReader The XmlReader provides an object for reading and validating against

DTD, XML Schema Reduced (XDR), or Xml Schema Definition (XSD). The construc

tor expects a Reader or a string as the source of the XML to be validated.

XslTransform The XslTransform can transform an XML document using an XSL

stylesheet. The XslTransform supports XSLT 1.0 syntax and provides two methods:

Load and Transform.

The Load method is used to load an XSLT stylesheet from a file or a stream. The

Transform method is used to perform the transformation. The Transform method

has several overloads but essentially expects a XmlDocument or XmlNode as the

first argument, an XsltArgumentList, and an output stream.

Working with XML Documents

There are certainly many ways of working with XML data in the .NET Framework.

This section covers some of the methods, such as creating a new XML file from

scratch, reading and writing XML files, searching XML data, and transforming XML

data.

Creating a New XmlDocument from Scratch To create a new XmlDocument, start

by creating an XmlDocument object. The XmlDocument object contains CreateEle

ment and CreateAttribute methods that are used to add nodes to the XmlDocument

object. The XmlElement contains the Attributes property, which is an XmlAttribute-

Collection. The XmlAttributeCollection inherits from the XmlNamedNodeMap class,

which is a collection of names with corresponding values.

The following code shows how an XmlDocument can be created from scratch and

saved to a file, and also uses the GetLabel method that was defined earlier in this

chapter.

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

'Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

Dim el As XmlElement

Dim childCounter As Integer

Dim grandChildCounter As Integer

'Create the xml declaration first

xmlDoc.AppendChild(_

Lesson 3: Working with XML Data

353

 xmlDoc.CreateXmlDeclaration("1.0", "utf-8", Nothing))

'Create the root node and append into doc

el = xmlDoc.CreateElement("myRoot")

xmlDoc.AppendChild(el)

'Child Loop

For childCounter = 1 To 4

 Dim childelmt As XmlElement

 Dim childattr As XmlAttribute

 'Create child with ID attribute

 childelmt = xmlDoc.CreateElement("myChild")

 childattr = xmlDoc.CreateAttribute("ID")

 childattr.Value = childCounter.ToString()

 childelmt.Attributes.Append(childattr)

 'Append element into the root element

 el.AppendChild(childelmt)

 For grandChildCounter = 1 To 3

 'Create grandchildren

 childelmt.AppendChild(xmlDoc.CreateElement("GrandChild"))

 Next

Next

'Save to file

xmlDoc.Save(MapPath("XmlDocumentTest.xml"))

Dim lbl as Label = GetLabel(275, 20)

lbl.Text = "XmlDocumentTest.xml Created"

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

//Declare and create new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

XmlElement el;

int childCounter;

int grandChildCounter;

 //Create the xml declaration first

xmlDoc.AppendChild(

 xmlDoc.CreateXmlDeclaration("1.0", "utf-8", null));

//Create the root node and append into doc

el = xmlDoc.CreateElement("myRoot");

xmlDoc.AppendChild(el);

//Child Loop

354

Chapter 4 Using ADO.NET and XML with ASP.NET

for (childCounter = 1; childCounter <= 4; childCounter++)

{

 XmlElement childelmt;

 XmlAttribute childattr;

 //Create child with ID attribute

 childelmt = xmlDoc.CreateElement("myChild");

 childattr = xmlDoc.CreateAttribute("ID");

 childattr.Value = childCounter.ToString();

 childelmt.Attributes.Append(childattr);

 //Append element into the root element

 el.AppendChild(childelmt);

 for (grandChildCounter = 1; grandChildCounter <= 3; grandChildCounter++)

{

 //Create grandchildren

 childelmt.AppendChild(xmlDoc.CreateElement("GrandChild"));

}

}

//Save to file

xmlDoc.Save(MapPath("XmlDocumentTest.xml"));

Label lbl = GetLabel(275, 20);

lbl.Text = "XmlDocumentTest.xml Created";

}

This code started by creating an instance of an XmlDocument. Next, the XML declara

tion is created and placed inside the child collection. An exception is thrown if this is

not the first child of the XmlDocument. The following is the XML file that was pro

duced by running the code sample:

<?xml version="1.0" encoding="utf-8"?>

<myRoot>

 <myChild ID="1">

 <GrandChild />

 <GrandChild />

 <GrandChild />

 </myChild>

 <myChild ID="2">

 <GrandChild />

 <GrandChild />

 <GrandChild />

 </myChild>

 <myChild ID="3">

 <GrandChild />

 <GrandChild />

 <GrandChild />

 </myChild>

 <myChild ID="4">

 <GrandChild />

 <GrandChild />

 <GrandChild />

 </myChild>

</myRoot>

Lesson 3: Working with XML Data

355

The previous code also works with the XmlDataDocument, but the XmlDataDocument

has more features for working relational data. These features will be explored later in

this lesson.

Parsing XmlDocuments Using the DOM An XmlDocument can be parsed by using a

recursive routine to loop through all elements. The following code is an example of

parsing an XmlDocument:

'VB

Protected Sub Button2_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

lbl = GetLabel(275, 20)

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlDocumentTest.xml"))

RecurseNodes(xmlDoc.DocumentElement)

End Sub

Public Sub RecurseNodes(ByVal node As XmlNode)

'start recursive loop with level 0

RecurseNodes(node, 0)

End Sub

Public Sub RecurseNodes(ByVal node As XmlNode, ByVal level As Integer)

Dim s As String

Dim n As XmlNode

Dim attr As XmlAttribute

s = String.Format("{0} Type:{1} Name:{2} Attr: ", _

 New String("-", level), node.NodeType, node.Name)

For Each attr In node.Attributes

 s &= String.Format("{0}={1} ", attr.Name, attr.Value)

Next

lbl.Text += s & "
"

For Each n In node.ChildNodes

 RecurseNodes(n, level + 1)

Next

End Sub

//C#

protected void Button2_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlDocumentTest.xml"));

RecurseNodes(xmlDoc.DocumentElement);

}

356

Chapter 4 Using ADO.NET and XML with ASP.NET

public void RecurseNodes(XmlNode node)

{

//start recursive loop with level 0

RecurseNodes(node, 0);

}

public void RecurseNodes(XmlNode node, int level)

{

string s;

s = string.Format("{0} Type:{1} Name:{2} Attr: ",

 new string('-', level), node.NodeType, node.Name);

foreach (XmlAttribute attr in node.Attributes)

{

 s += string.Format("{0}={1} ", attr.Name, attr.Value);

}

lbl.Text += s + "
";

foreach (XmlNode n in node.ChildNodes)

{

 RecurseNodes(n, level + 1);

}

}

The output of this code is shown in Figure 4-20. This code starts by loading an XML

file and then calling a procedure called RecurseNodes. The RecurseNodes procedure is

overloaded. The first call simply passes the xmlDoc’s root node. The recursive calls

pass the recursion level. Each time the RecurseNodes procedure executes, the node

information is printed, and for each child that the node has, a recursive call is made.

Figure 4-20 Parsing the XmlDocument.

Lesson 3: Working with XML Data

357

Parsing XmlDocuments Using the XPathNavigator The XPathNavigator provides an

alternate method of walking the XML document recursively. This object does not use

the methods that are defined in the DOM. Instead, it uses XPath queries to navigate

the data and is in the System.Xml.XPath namespace. It offers many methods and prop

erties that can be used, as shown in the following code example:

'VB

Protected Sub Button3_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

lbl = GetLabel(275, 20)

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlDocumentTest.xml"))

Dim xpathNav As XPathNavigator = xmlDoc.CreateNavigator()

xpathNav.MoveToRoot()

RecurseNavNodes(xpathNav)

End Sub

Public Sub RecurseNavNodes(ByVal node As XPathNavigator)

'start recursive loop with level 0

RecurseNavNodes(node, 0)

End Sub

Public Sub RecurseNavNodes(ByVal node As XPathNavigator, _

 ByVal level As Integer)

Dim s As String

s = string.Format("{0} Type:{1} Name:{2} Attr: ", _

 New String("-", level), node.NodeType, node.Name)

If node.HasAttributes Then

 node.MoveToFirstAttribute()

Do

 s += string.Format("{0}={1} ", node.Name, node.Value)

 Loop While node.MoveToNextAttribute()

 node.MoveToParent()

End If

lbl.Text += s + "
"

If node.HasChildren Then

 node.MoveToFirstChild()

Do

 RecurseNavNodes(node, level + 1)

 Loop While node.MoveToNext()

 node.MoveToParent()

358

Chapter 4 Using ADO.NET and XML with ASP.NET

End If

End Sub

//C#

protected void Button3_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlDocumentTest.xml"));

XPathNavigator xpathNav = xmlDoc.CreateNavigator();

xpathNav.MoveToRoot();

RecurseNavNodes(xpathNav);

}

public void RecurseNavNodes(XPathNavigator node)

{

//start recursive loop with level 0

RecurseNavNodes(node, 0);

}

public void RecurseNavNodes(XPathNavigator node, int level)

{

string s = null;

s = string.Format("{0} Type:{1} Name:{2} Attr: ",

 new string('-', level), node.NodeType, node.Name);

if (node.HasAttributes)

{

 node.MoveToFirstAttribute();

do

 {

 s += string.Format("{0}={1} ", node.Name, node.Value);

 } while (node.MoveToNextAttribute());

 node.MoveToParent();

}

lbl.Text += s + "
";

if (node.HasChildren)

{

 node.MoveToFirstChild();

do

 {

 RecurseNavNodes(node, level + 1);

 } while (node.MoveToNext());

 node.MoveToParent();

}

}

Lesson 3: Working with XML Data

359

This is recursive code that works in a similar fashion to the DOM example that was

previously covered. The difference is in the methods that are used to get access to each

node.

To get access to the attributes, there is a HasAttributes property that is true if the cur

rent node has attributes. The MoveToFirstAttribute and MoveToNextAttribute methods

are used to navigate the attributes. After the attribute list has been navigated, the

MoveToParent method moves back to the element.

The HasChildren property returns true if the current node has child nodes. The

MoveToFirstChild and MoveToNext are used to navigate the child nodes. After the

children have been navigated, the MoveToParent method moves back to the parent

element.

Depending on the task at hand, it may be more preferable to use the XPathNavigator

instead of the DOM. In this example, other than syntax, there is little difference

between the two methods.

Searching the XmlDocument Using the DOM The DOM provides GetElementByID

and the GetElementsByTagName methods for searching an XmlDocument. The

GetElementByID method locates an element based on its ID. The ID refers to an ID

type that has been defined in a DTD document. To demonstrate this, the following

XML is used in many of the examples:

XML File – XmlSample.xml
<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE myRoot [

<!ELEMENT myRoot ANY>

<!ELEMENT myChild ANY>

<!ELEMENT myGrandChild EMPTY>

<!ATTLIST myChild

ChildID ID #REQUIRED

>

]>

<myRoot>

<myChild ChildID="ref-1">

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID="ref-2">

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

360

Chapter 4 Using ADO.NET and XML with ASP.NET

<myChild ChildID="ref-3">

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID="ref-4">

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

</myRoot>

The ChildID has been defined as an ID data type, and an ID is required to begin with

a character, underscore, or colon. The following code performs a lookup of the ele

ment with an ID of ref-3:

'VB

Protected Sub Button4_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button4.Click

lbl = GetLabel(275, 20)

Dim s As String

'Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlSample.xml"))

Dim node As XmlNode

node = xmlDoc.GetElementById("ref-3")

s = string.Format("Type:{0} Name:{1} Attr:", _

 node.NodeType, node.Name)

Dim a As XmlAttribute

For Each a In node.Attributes

 s += string.Format("{0}={1} ", a.Name, a.Value)

Next

 lbl.Text = s + "
"

End Sub

//C#

protected void Button4_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

//Declare and create new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlSample.xml"));

XmlNode node;

node = xmlDoc.GetElementById("ref-3");

s = string.Format("Type:{0} Name:{1} Attr:",

 node.NodeType, node.Name);

foreach (XmlAttribute a in node.Attributes)

{

Lesson 3: Working with XML Data

361

}

 s += string.Format("{0}={1} ", a.Name, a.Value);

}

lbl.Text = s + "
";

The browser output is shown in Figure 4-21. When an ID data type is defined, the

ID must be unique. This code locates ref-3 and displays the node and attributes

information.

Figure 4-21 The browser output when the code is run to locate ref-3 using the GetElementById

method.

The SelectSingleNode method can also be used to locate an element. The SelectSingle-

Node method requires an XPath query to be passed into the method. The previous

code sample has been modified to call the SelectSingleNode method to achieve the

same result using an XPath query. The sample code is as follows:

'VB

Protected Sub Button5_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button5.Click

lbl = GetLabel(275, 20)

Dim s As String

'Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlSample.xml"))

Dim node As XmlNode

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-3']")

s = String.Format("Type:{0} Name:{1} Attr:", _

 node.NodeType, node.Name)

Dim a As XmlAttribute

For Each a In node.Attributes

 s += String.Format("{0}={1} ", a.Name, a.Value)

362

Chapter 4 Using ADO.NET and XML with ASP.NET

Next

lbl.Text = s + "
"

End Sub

//C#

protected void Button5_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

//Declare and create new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlSample.xml"));

XmlNode node;

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-3']");

s = string.Format("Type:{0} Name:{1} Attr:",

 node.NodeType, node.Name);

foreach (XmlAttribute a in node.Attributes)

{

 s += string.Format("{0}={1} ", a.Name, a.Value);

}

lbl.Text = s + "
";

}

The SelectSingleNode method does not require a DTD to be provided and can perform

an XPath lookup on any element or attribute where the SelectSingleNode requires an

ID data type and a DTD.

The GetElementsByTagName method returns an XmlNodeList containing all matched

elements. This following code returns a list of nodes which have the tag name of

myGrandChild.

'VB

Protected Sub Button6_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button6.Click

lbl = GetLabel(275, 20)

Dim s As String

'Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlSample.xml"))

Dim elmts As XmlNodeList

elmts = xmlDoc.GetElementsByTagName("myGrandChild")

For Each node as XmlNode In elmts

 s = string.Format("Type:{0} Name:{1}", _

 node.NodeType, node.Name)

 lbl.Text += s + "
"

Next

End Sub

//C#

Lesson 3: Working with XML Data

363

protected void Button6_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

//Declare and create new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlSample.xml"));

XmlNodeList elmts;

elmts = xmlDoc.GetElementsByTagName("myGrandChild");

foreach (XmlNode node in elmts)

{

 s = string.Format("Type:{0} Name:{1}",

 node.NodeType, node.Name);

 lbl.Text += s + "
";

}

}

This code retrieves the list of elements that have the tag names of myGrandChild. The

browser output is shown in Figure 4-22. This method does not require a DTD to be

included, which makes this method a preference, even for a single node lookup when

searching by tag name.

Figure 4-22 The browser output when performing a search for myGrandChild elements using the

GetElementsByTagName method.

The SelectNodes method can also be used to locate an XmlNodeList. The SelectNodes

method requires an XPath query to be passed into the method. The previous code

364

Chapter 4 Using ADO.NET and XML with ASP.NET

sample has been modified to call the SelectNodes method to achieve the same result.

The code is as follows:

'VB

Protected Sub Button7_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button7.Click

 lbl = GetLabel(275, 20)

Dim s As String

'Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlSample.xml"))

Dim elmts As XmlNodeList

elmts = xmlDoc.SelectNodes("//myGrandChild")

For Each node As XmlNode In elmts

 s = String.Format("Type:{0} Name:{1}", _

 node.NodeType, node.Name)

 lbl.Text += s + "
"

Next

End Sub

//C#

protected void Button7_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

//Declare and create new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlSample.xml"));

XmlNodeList elmts;

elmts = xmlDoc.SelectNodes("//myGrandChild");

foreach (XmlNode node in elmts)

{

 s = string.Format("Type:{0} Name:{1}",

 node.NodeType, node.Name);

 lbl.Text += s + "
";

}

}

Note that this method can perform an XPath lookup on any element or attribute, with

much more querying flexibility; whereas, the SelectElementsByTagName is limited to a

tag name.

Lesson 3: Working with XML Data

365

Using the XPathNavigator to Search XPathDocuments The XPathNavigator offers

much more flexibility for performing searches than what is available through the

DOM. The XPathNavigator has many methods that are focused around XPath que

ries using a cursor model. The XPathNavigator works with the XmlDocument, but the

XPathDocument object is tuned for the XPathNavigator and uses fewer resources

than the XmlDocument. If the DOM is not required, use the XPathDocument instead

of the XmlDocument. The following code example performs a search for the myChild

element, where the ChildID attribute is equal to ref-3:

'VB

Protected Sub Button8_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button8.Click

lbl = GetLabel(275, 20)

Dim s As String

Dim xmlDoc As New XPathDocument(MapPath("XmlSample.xml"))

Dim nav As XPathNavigator = xmlDoc.CreateNavigator()

Dim expr As String = "//myChild[@ChildID='ref-3']"

 'Display the selection.

Dim iterator As XPathNodeIterator = nav.Select(expr)

Dim navResult As XPathNavigator = iterator.Current

While (iterator.MoveNext())

 s = string.Format("Type:{0} Name:{1} ", _

 navResult.NodeType, navResult.Name)

 If navResult.HasAttributes Then

 navResult.MoveToFirstAttribute()

 s += "Attr: "

Do

s += string.Format("{0}={1} ", _

 navResult.Name, navResult.Value)

 Loop While navResult.MoveToNextAttribute()

 End If

 lbl.Text += s + "
"

End While

End Sub

//C#

protected void Button8_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

XPathDocument xmlDoc = new XPathDocument(MapPath("XmlSample.xml"));

XPathNavigator nav = xmlDoc.CreateNavigator();

string expr = "//myChild[@ChildID='ref-3']";

//Display the selection.

366

Chapter 4 Using ADO.NET and XML with ASP.NET

XPathNodeIterator iterator = nav.Select(expr);

XPathNavigator navResult = iterator.Current;

while (iterator.MoveNext())

{

 s = String.Format("Type:{0} Name:{1} ",

 navResult.NodeType, navResult.Name);

 if (navResult.HasAttributes)

{

 navResult.MoveToFirstAttribute();

 s += "Attr: ";

do

{

s += String.Format("{0}={1} ",

 navResult.Name, navResult.Value);

 } while (navResult.MoveToNextAttribute());

}

 lbl.Text += s + "
";

}

}

Figure 4-23 shows the browser output. This code uses an XPath query to locate the

myChild element for which the ChildID attribute is equal to ref-3. The Select method is

called with the query string. The Select method returns an XPathNodeIterator object,

which allows navigation over the node or nodes that are returned. The XPathNode-

Iterator has a property called Current, which represents the current node, and is in

itself an XPathNavigator data type. Rather than use iterator.Current throughout the

code, a variable called navResult is created and assigned a reference to iterator.Current.

Note that the call to MoveToParent is not required when finishing the loop through the

attributes. This is because the iterator.MoveNext doesn’t care what the current location

is, because it is simply going to the next node in its list.

Figure 4-23 Using the XPathNavigator to search for a node.

Lesson 3: Working with XML Data

367

Some of the real power of the XPathNavigator starts to show when the requirement is

to retrieve a list of nodes and sort the output. Sorting involves compiling an XPath

query string to an XPathExpression object, and then adding a sort to the compiled

expressions. The following is an example of compiling and sorting:

'VB

Protected Sub Button9_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button9.Click

lbl = GetLabel(275, 20)

Dim s As String

Dim xmlDoc As New XPathDocument(MapPath("XmlSample.xml"))

Dim nav As XPathNavigator = xmlDoc.CreateNavigator()

'Select all myChild elements

Dim expr As XPathExpression

expr = nav.Compile("//myChild")

'Sort the selected books by title.

expr.AddSort("@ChildID", _

 XmlSortOrder.Descending, _

 XmlCaseOrder.None, "", _

 XmlDataType.Text)

 'Display the selection.

Dim iterator As XPathNodeIterator = nav.Select(expr)

Dim navResult As XPathNavigator = iterator.Current

While (iterator.MoveNext())

 s = String.Format("Type:{0} Name:{1} ", _

 navResult.NodeType, navResult.Name)

 If navResult.HasAttributes Then

 navResult.MoveToFirstAttribute()

 s += "Attr: "

Do

s += String.Format("{0}={1} ", _

 navResult.Name, navResult.Value)

 Loop While navResult.MoveToNextAttribute()

 End If

 lbl.Text += s + "
"

End While

End Sub

//C#

protected void Button9_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

string s;

XPathDocument xmlDoc = new XPathDocument(MapPath("XmlSample.xml"));

368

Chapter 4 Using ADO.NET and XML with ASP.NET

XPathNavigator nav = xmlDoc.CreateNavigator();

 //Select all myChild elements

XPathExpression expr;

expr = nav.Compile("//myChild");

//Sort the selected books by title.

expr.AddSort("@ChildID",

 XmlSortOrder.Descending,

 XmlCaseOrder.None, "",

 XmlDataType.Text);

//Display the selection.

XPathNodeIterator iterator = nav.Select(expr);

XPathNavigator navResult = iterator.Current;

while (iterator.MoveNext())

{

 s = String.Format("Type:{0} Name:{1} ",

 navResult.NodeType, navResult.Name);

 if (navResult.HasAttributes)

{

 navResult.MoveToFirstAttribute();

 s += "Attr: ";

do

{

s += String.Format("{0}={1} ",

 navResult.Name, navResult.Value);

 } while (navResult.MoveToNextAttribute());

}

 lbl.Text += s + "
";

}

}

Figure 4-24 shows the browser output. This code is similar to the previous example,

with the exception of the creation of the expr variable. The expr variable is created by

compiling the query string to an XPathExpression. After that, the AddSort method is

used to sort the output in descending order, based on the ChildID attribute.

When working with XML, it may seem easier to use the DOM methods to access data,

but there are limits to the search capabilities that could require walking the tree to get

the desired output. On the surface, the XPathNavigator may appear to be more diffi

cult to use, but having the ability to perform XPath queries and sorting make this the

object of choice for more complex XML problem solving.

Lesson 3: Working with XML Data

369

Figure 4-24 The browser output when the XPath query is compiled to an XPathExpression and

sorted.

Writing a File Using the XmlTextWriter The XmlTextWriter can be used to create an

XML file from scratch. This class has many properties that aid in the creation of XML

nodes. The following sample creates an XML file called EmployeeList.xml and writes

two employees to the file:

'VB

Protected Sub Button10_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button10.Click

Dim xmlWriter As New _

 XmlTextWriter(MapPath("EmployeeList.xml"), _

 System.Text.Encoding.UTF8)

With xmlWriter

 .Formatting = Formatting.Indented

 .Indentation = 5

 .WriteStartDocument()

 .WriteComment("XmlTextWriter Test Date: " & _

 DateTime.Now.ToShortDateString())

 .WriteStartElement("EmployeeList")

 'New Employee

 .WriteStartElement("Employee")

 .WriteAttributeString("EmpID", "1")

 .WriteAttributeString("LastName", "JoeLast")

 .WriteAttributeString("FirstName", "Joe")

 .WriteAttributeString("Salary", XmlConvert.ToString(50000))

 .WriteElementString("HireDate", _

370

Chapter 4 Using ADO.NET and XML with ASP.NET

 XmlConvert.ToString(#1/1/2003#, _

 XmlDateTimeSerializationMode.Unspecified))

 .WriteStartElement("Address")

 .WriteElementString("Street1", "123 MyStreet")

 .WriteElementString("Street2", "")

 .WriteElementString("City", "MyCity")

 .WriteElementString("State", "OH")

 .WriteElementString("ZipCode", "12345")

 'Address

 .WriteEndElement()

 'Employee

 .WriteEndElement()

 'New Employee

 .WriteStartElement("Employee")

 .WriteAttributeString("EmpID", "2")

 .WriteAttributeString("LastName", "MaryLast")

 .WriteAttributeString("FirstName", "Mary")

 .WriteAttributeString("Salary", XmlConvert.ToString(40000))

 .WriteElementString("HireDate", _

 XmlConvert.ToString(#1/2/2003#, _

 XmlDateTimeSerializationMode.Unspecified))

 .WriteStartElement("Address")

 .WriteElementString("Street1", "234 MyStreet")

 .WriteElementString("Street2", "")

 .WriteElementString("City", "MyCity")

 .WriteElementString("State", "OH")

 .WriteElementString("ZipCode", "23456")

 'Address

 .WriteEndElement()

 'Employee

 .WriteEndElement()

 'EmployeeList

 .WriteEndElement()

 .Close()

End With

Response.Redirect("EmployeeList.xml")

End Sub

//C#

protected void Button10_Click(object sender, EventArgs e)

{

XmlTextWriter xmlWriter = new

XmlTextWriter(MapPath("EmployeeList.xml"),

System.Text.Encoding.UTF8);

xmlWriter.Formatting = Formatting.Indented;

xmlWriter.Indentation = 5;

xmlWriter.WriteStartDocument();

Lesson 3: Working with XML Data

371

xmlWriter.WriteComment("XmlTextWriter Test Date: " +

 DateTime.Now.ToShortDateString());

xmlWriter.WriteStartElement("EmployeeList");

//New Employee

xmlWriter.WriteStartElement("Employee");

xmlWriter.WriteAttributeString("EmpID", "1");

xmlWriter.WriteAttributeString("LastName", "JoeLast");

xmlWriter.WriteAttributeString("FirstName", "Joe");

xmlWriter.WriteAttributeString("Salary", XmlConvert.ToString(50000));

xmlWriter.WriteElementString("HireDate",

 XmlConvert.ToString(DateTime.Parse("1/1/2003"),

 XmlDateTimeSerializationMode.Unspecified));

xmlWriter.WriteStartElement("Address");

xmlWriter.WriteElementString("Street1", "123 MyStreet");

xmlWriter.WriteElementString("Street2", "");

xmlWriter.WriteElementString("City", "MyCity");

xmlWriter.WriteElementString("State", "OH");

xmlWriter.WriteElementString("ZipCode", "12345");

//Address

xmlWriter.WriteEndElement();

//Employee

xmlWriter.WriteEndElement();

//New Employee

xmlWriter.WriteStartElement("Employee");

xmlWriter.WriteAttributeString("EmpID", "2");

xmlWriter.WriteAttributeString("LastName", "MaryLast");

xmlWriter.WriteAttributeString("FirstName", "Mary");

xmlWriter.WriteAttributeString("Salary", XmlConvert.ToString(40000));

xmlWriter.WriteElementString("HireDate",

 XmlConvert.ToString(DateTime.Parse("1/2/2003"),

 XmlDateTimeSerializationMode.Unspecified));

xmlWriter.WriteStartElement("Address");

xmlWriter.WriteElementString("Street1", "234 MyStreet");

xmlWriter.WriteElementString("Street2", "");

xmlWriter.WriteElementString("City", "MyCity");

xmlWriter.WriteElementString("State", "OH");

xmlWriter.WriteElementString("ZipCode", "23456");

//Address

xmlWriter.WriteEndElement();

//Employee

372

Chapter 4 Using ADO.NET and XML with ASP.NET

xmlWriter.WriteEndElement();

//EmployeeList

xmlWriter.WriteEndElement();

xmlWriter.Close();

Response.Redirect("EmployeeList.xml");

}

This code starts by opening the file as part of the constructor for the XmlTextWriter.

The constructor also expects an encoding type. Since an argument is required, pass

ing Nothing causes the encoding type to be UTF-8, which is the same as the value that

is explicitly being passed. The following is the EmployeeList.xml that is created.

The XmlTextWriter was used to produce this XML file
<?xml version="1.0" encoding="utf-8"?>

<!--XmlTextWriter Test Date: 8/16/2006-->

<EmployeeList>

 <Employee EmpID="1" LastName="JoeLast" FirstName="Joe" Salary="50000">

 <HireDate>2003-01-01T00:00:00</HireDate>

 <Address>

 <Street1>123 MyStreet</Street1>

 <Street2 />

 <City>MyCity</City>

 <State>OH</State>

 <ZipCode>12345</ZipCode>

 </Address>

 </Employee>

 <Employee EmpID="2" LastName="MaryLast" FirstName="Mary" Salary="40000">

 <HireDate>2003-01-02T00:00:00</HireDate>

 <Address>

 <Street1>234 MyStreet</Street1>

 <Street2 />

 <City>MyCity</City>

 <State>OH</State>

 <ZipCode>23456</ZipCode>

 </Address>

 </Employee>

</EmployeeList>

There are many statements that are doing nothing more than writing to the xmlWriter.

Typing time is saved in the VB code by the use of With xmlWriter statement, which

allows a simple dot to be typed to represent the xmlWriter object.

The XmlTextWriter handles the formatting of the document by setting the Formatting

and Indentation properties.

The WriteStartDocument method writes the XML declaration to the file. The

WriteComment writes a comment to the file.

Lesson 3: Working with XML Data

373

When writing elements, you can use either the WriteStartElement method or the

WriteElementString method. The WriteStartElement method only writes the starting

element but keeps track of the nesting level and adds new elements inside this ele

ment. The element is completed when a call is made to the WriteEndElement

method. The WriteElementString method simply writes a closed element to the file.

The WriteAttribute method takes a name and value pair and writes the attribute into

the current open element.

When writing is complete, the Close method must be called to avoid losing data. The

file is then saved.

Reading a File Using the XmlTextReader The XmlTextReader is used to read an XML

file, node by node. The reader provides forward-only, non-caching access to an XML

data stream. The reader is ideal for use when there is a possibility that the information

that is desired is near the top of the XML file, and the file is large. If random access is

required, use the XPathNavigator class or the XmlDocument class. The following code

reads the XML file that was created in the previous example and displays information

about each node:

'VB

Protected Sub Button11_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button11.Click

lbl = GetLabel(275, 20)

Dim xmlReader As New _

 XmlTextReader(MapPath("EmployeeList.xml"))

Do While xmlReader.Read()

 Select Case xmlReader.NodeType

 Case XmlNodeType.XmlDeclaration, _

 XmlNodeType.Element, _

 XmlNodeType.Comment

Dim s As String

s = String.Format("{0}: {1} = {2}
", _

 xmlReader.NodeType, _

 xmlReader.Name, _

 xmlReader.Value)

lbl.Text += s

 Case XmlNodeType.Text

Dim s As String

s = String.Format(" - Value: {0}
", _

 xmlReader.Value)

lbl.Text += s

 End Select

374

Chapter 4 Using ADO.NET and XML with ASP.NET

 If xmlReader.HasAttributes Then

 Do While xmlReader.MoveToNextAttribute()

Dim s As String

s = String.Format(" - Attribute: {0} = {1}
", _

 xmlReader.Name, xmlReader.Value)

lbl.Text += s

 Loop

 End If

Loop

xmlReader.Close()

End Sub

//C#

protected void Button11_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

XmlTextReader xmlReader = new

 XmlTextReader(MapPath("EmployeeList.xml"));

while(xmlReader.Read())

{

 switch(xmlReader.NodeType)

{

 case XmlNodeType.XmlDeclaration:

 case XmlNodeType.Element:

 case XmlNodeType.Comment:

{

string s;

s = String.Format("{0}: {1} = {2}
",

 xmlReader.NodeType,

 xmlReader.Name,

 xmlReader.Value);

lbl.Text += s;

break;

}

 case XmlNodeType.Text:

{

string s;

s = String.Format(" - Value: {0}
",

 xmlReader.Value);

lbl.Text += s;

break;

}

}

 if(xmlReader.HasAttributes)

{

 while (xmlReader.MoveToNextAttribute())

{

string s;

s = String.Format(" - Attribute: {0} = {1}
",

 xmlReader.Name, xmlReader.Value);

lbl.Text += s;

}

}

 }

Lesson 3: Working with XML Data

375

}

xmlReader.Close();

Figure 4-25 shows the browser output. This code opens the EmployeeList file, and

then performs a simple loop, reading one element at a time until finished. For each

node that is read, a check is made on the NodeType, and the node information is

printed.

Figure 4-25 Using the XmlTextReader object to read an XML file and display each node’s

information.

When a node is read, its corresponding attributes are read as well. A check is made to

see if the node has attributes, and they are displayed.

Modifying an XML Document

When the XmlDocument object is loaded, you can easily add and remove nodes. When

removing a node, you simply need to locate the node and delete it from its parent.

When adding a node, you need to create the node, search for the appropriate location

to insert the node into, and insert the node. The following code snippet deletes an

existing node and adds a new node:

'VB

Protected Sub Button12_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button12.Click

lbl = GetLabel(275, 20)

376

Chapter 4 Using ADO.NET and XML with ASP.NET

'Declare and load new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(MapPath("XmlSample.xml"))

'delete a mode

Dim node As XmlNode

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-3']")

node.ParentNode.RemoveChild(node)

'create a node and add it

Dim newElement as XmlElement = _

 xmlDoc.CreateElement("myNewElement")

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-1']")

node.ParentNode.InsertAfter(newElement, node)

xmlDoc.Save(MapPath("XmlSampleModified.xml"))

Response.Redirect("XmlSampleModified.xml")

End Sub

//C#

protected void Button12_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

//Declare and load new XmlDocument

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(MapPath("XmlSample.xml"));

//delete a mode

XmlNode node;

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-3']");

node.ParentNode.RemoveChild(node);

//create a node and add it

XmlElement newElement =

 xmlDoc.CreateElement("myNewElement");

node = xmlDoc.SelectSingleNode("//myChild[@ChildID='ref-1']");

node.ParentNode.InsertAfter(newElement, node);

xmlDoc.Save(MapPath("XmlSampleModified.xml"));

Response.Redirect("XmlSampleModified.xml");

}

To delete a node, use the SelectSingleNode method to locate the node to delete. After

the node is located, the node can be removed from its parent by using the ParentNode

property’s RemoveChild method.

To add a node, execute the CreateElement method on the XmlDocument object. Next,

the insert location is searched and the ParentNode property’s InsertAfter method is

used to insert the new node. Figure 4-26 shows the resulting XML document.

Lesson 3: Working with XML Data

Figure 4-26 The result of deleting a node and adding a node.

Validating XML Documents

377

An important element to exchanging documents between disparate systems is the

ability to define the structure of an XML document and then validate the XML docu

ment against its defined structure. The .NET Framework offers the ability to perform

validation against a document type definition (DTD) or schema. Earlier versions of

the .NET Framework used the XmlValidatingReader object to perform validation, but

this object is now obsolete. Instead, this section explores XML document validation

using the XmlReader class.

The XmlReader class performs forward-only reading and validation of a stream of

XML. The XmlReader class contains a Create method that can be passed as a string or

a stream, as well as an XmlReaderSettings object. To perform validation, the XmlReader-

Settings object must be created and its properties set to perform validation. In the next

example, the files XmlSample.xml and XmlBadSample.xml are validated using the fol

lowing code:

'VB

Protected Sub Button13_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button13.Click

lbl = GetLabel(275, 20)

If ValidateDocument(MapPath("XmlSample.xml")) Then

 lbl.Text += "Valid Document
"

Else

 lbl.Text += "Invalid Document
"

378

Chapter 4 Using ADO.NET and XML with ASP.NET

End If

End Sub

Protected Sub Button14_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button14.Click

lbl = GetLabel(275, 20)

If ValidateDocument(MapPath("XmlBadSample.xml")) Then

 lbl.Text += "Valid Document
"

Else

 lbl.Text += "Invalid Document
"

End If

End Sub

Public Function ValidateDocument(ByVal fileName As String) _

 As Boolean

Dim xmlSet As New XmlReaderSettings()

xmlSet.ValidationType = ValidationType.DTD

xmlSet.ProhibitDtd = False

Dim vr As XmlReader = XmlReader.Create(_

 fileName, xmlSet)

Dim xd As New XmlDocument()

Try

 xd.Load(vr)

 Return True

Catch ex As Exception

 lbl.Text += ex.Message + "
"

 Return False

Finally

 vr.Close()

End Try

End Function

//C#

protected void Button13_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

if (ValidateDocument(MapPath("XmlSample.xml")))

{

 lbl.Text += "Valid Document
";

}

else

{

 lbl.Text += "Invalid Document
";

}

}

protected void Button14_Click(object sender, EventArgs e)

{

lbl = GetLabel(275, 20);

if (ValidateDocument(MapPath("XmlBadSample.xml")))

}

{

 lbl.Text += "Valid Document
";

}

else

{

 lbl.Text += "Invalid Document
";

}

Lesson 3: Working with XML Data

379

private bool ValidateDocument(string fileName)

{

XmlReaderSettings xmlSet = new XmlReaderSettings();

xmlSet.ValidationType = ValidationType.DTD;

xmlSet.ProhibitDtd = false;

XmlReader vr = XmlReader.Create(fileName, xmlSet);

XmlDocument xd = new XmlDocument();

try

{

 xd.Load(vr);

 return true;

}

catch (Exception ex)

{

 lbl.Text += ex.Message + "
";

 return false;

}

finally

{

 vr.Close();

}

}

The XmlBadSample.xml file is as follows:

XML File – XmlBadSample.xml
<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE myRoot [

<!ELEMENT myRoot ANY>

<!ELEMENT myChild ANY>

<!ELEMENT myGrandChild EMPTY>

<!ATTLIST myChild

ChildID ID #REQUIRED

>

]>

<myRoot>

<myChild ChildID="ref-1">

 <myGrandChild/>

 <myGrandChild/>

 <myGrandChild/>

</myChild>

<myChild ChildID="ref-2">

380

Chapter 4 Using ADO.NET and XML with ASP.NET

 <myGrandChild/>

 <myGrandChild/>

 <myGrandChild>this test</myGrandChild>

</myChild>

<myChild ChildID="ref-3">

 <myGrandChild/>

 <myGrandChild/>

 <myGrandChild/>

</myChild>

<myChild ChildID="ref-4">

 <myGrandChild/>

 <myGrandChild/>

 <myGrandChild/>

</myChild>

</myRoot>

This code simply opens the XML file with an XmlReader, and, while the XmlDocument

is being read, the document is being validated. Since this code has an embedded DTD,

the document is validated.

The DTD states that the myGrandChild element must be empty, but one of the

myGrandChild elements of myChild ref-1 has a myGrandChild element containing the

word Hi. This causes an error, as shown in Figure 4-27. Attempts to read from the Xml-

Reader when valid should always be within a try/catch block to catch possible valida

tion exceptions.

Figure 4-27 The XmlReader throws an exception when the document is not valid.

Quick Check

Lesson 3: Working with XML Data

381

1. What method can you execute to locate a single XML node by its tag name?

2. What method can you use to search for all elements that have a specific tag

name and retrieve the results as an XmlNodeList?

3. What object should you use to perform XPath queries on large XML

documents?

Quick Check Answers

1. SelectSingleNode

2. GetElementsByTagName or SelectNodes

3. XPathNavigator

Lab: Working with XML Data

In this lab, you work with XML data to display a subset of an XML file in a GridView

control, using the XmlDataSource and an XSL Transform file.

� Exercise 1: Create the Web Site and the XML Files

In this exercise, you create the Web site and XML file.

1. Open Visual Studio 2005; create a new Web site called WorkingWithXmlData

using your preferred programming language. The new Web site will be created

and a Web page called Default.aspx is displayed.

2. In the Solution Explorer, right-click the App_Data folder and select Add New

Item. Select XML file, name the file CarList.xml, and click Add.

3. In the XML file, add the following:

XML File – CarList.xml
<?xml version="1.0" encoding="utf-8" ?>

<CarList>

<Car Vin="1A59B" Make="Chevrolet" Model="Impala" Year="1963" Price="1125.00" />

<Car Vin="9B25T" Make="Ford" Model="F-250" Year="1970" Price="1595.00" />

<Car Vin="3H13R" Make="BMW" Model="Z-4" Year="2006" Price="55123.00" />

<Car Vin="7D67A" Make="Mazda" Model="Miata" Year="2003" Price="28250.00" />

<Car Vin="4T21N" Make="VW" Model="Bug" Year="1956" Price="500.00" />

</CarList>

382

Chapter 4 Using ADO.NET and XML with ASP.NET

4. Drag a DetailsView control onto the Web page and size it wide enough to display

the car information.

5. Click the symbol in the upper-right corner of the DetailsView control to display

the DetailsView Tasks window.

6. Click the Auto Format link and select Professional.

7. Click the Choose Data Source drop-down list and select New Data Source to

start the Data Source Configuration Wizard. For the data source type, select

XML file and click OK.

8. On the Configure Data Source page, click the browse button for the Data prop

erty and browse to the CarList.xml file in the App_Data folder.

9. Click OK.

10. Select the Enable Paging option. Configuration of the DetailsView is complete.

11. Run the Web page. Notice that the data is retrieved and displayed.

Chapter 5

Creating Custom Web Controls

There are many controls in Microsoft Visual Studio 2005 that certainly save you lots

of development time, but there are always opportunities for you to build your own

controls to save even more development time. Many business problems require cus

tom controls to simplify the development solution. Custom controls are typically

required to obtain different functionality, new functionality, or the combined func

tionality of several controls. This chapter covers the types of custom controls that you

can create in ASP.NET 2.0.

Exam objectives in this chapter:

■ Create a composite Web application control.

❑ Create a user control.

❑ Convert a Web Forms page to a user control.

❑ Include a user control in a Web Forms page.

❑ Manipulate user control properties.

❑ Handle user control events within the user control code-declaration block

or code-behind file.

❑ Create instances of user controls programmatically.

❑ Develop user controls in a code-behind file.

❑ Create a templated user control.

■ Create a custom Web control that inherits from the WebControl class.

❑ Create a custom Web control.

❑ Add a custom Web control to the Toolbox.

❑ Individualize a custom Web control.

❑ Create a custom designer for a custom Web control.

389

390

Chapter 5 Creating Custom Web Controls

■ Create a composite server control.

❑ Create a base class for composite controls.

❑ Create a composite control.

■ Develop a templated control.

❑ Create a templated control.

❑ Develop a templated data-bound control.

Lessons in this chapter:

■ Lesson 1: Working with User Controls . 392

■ Lesson 2: Working with Custom Web Server Controls 423

Before You Begin
To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed on your

computer with Microsoft SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

Real World

Glenn Johnson

Although we use the controls that are built-in to save time, we commonly don’t

see the opportunities to save more time by implementing custom controls to

solve business problems. Custom controls not only save you time, but they also

provide a consistent interface for your Web site.

Custom Web Control Types

Custom Web Control Types

391

There are three primary custom control types that will be covered in this chapter: user

controls, custom Web controls, and composite controls. The following is a descrip

tion of these controls:

■ user control A user control is a template control that provides extra behavior to

allow constituent (individual) controls to be added to the user control in the

Graphical User Interface (GUI) designer. These controls are added to the user

control’s template file, the .ascx file. The .ascx file is similar to the Web page’s

.aspx file and can have a code-behind page. To enable reuse, the .ascx and code-

behind files must be included in each project that requires the user control.

■ custom Web control A custom Web control is a control that inherits from a Web

control, where you either write all of the code to render the control, or inherit it

from an existing Web control and provide extra behavior as necessary. The class

file can be compiled to a .dll that can be shared among applications and can

optionally be installed in the global assembly cache (GAC).

■ composite control A composite control is a custom Web control that can contain

constituent controls; the constituent controls are added to the composite con

trol via code to the class file that defines the control. The class file can be com

piled to a .dll that can be shared among applications and can optionally be

installed in the GAC.

392

Chapter 5 Creating Custom Web Controls

Lesson 1: Working with User Controls

In this lesson, you learn how to create user controls and templated user controls. You

also learn to make use of these controls in your Web page development efforts. This

lesson starts by covering user controls, because they are the easiest to use. After that,

the lesson covers templated user controls.

After this lesson, you will be able to:

■ Create a user control.

■ Add user controls to a Web page.

■ Handle user control events within the user control code-declaration block or code-

behind file.

■ Create a templated user control.

Estimated lesson time: 60 minutes

Employing User Controls

A user control provides the easiest way to combine several controls onto a single con

trol that can simply be dragged onto a Web page without writing much code.

Many times, pages contain similar controls. For example, when prompting a user for

a billing address and a shipping address, the controls to retrieve the name, address,

city, state, and zip code are duplicated. This is where user controls can be very handy.

You can create a user control containing the name, address, city, state, and zip code

and drop it onto a Web page where needed.

User controls are built using similar procedures to those that are required to build a

standard Web page. Web pages can even be converted to user controls with little

effort.

User controls inherit from the UserControl class, which inherits from the Template-

Control class, which inherits from the Control class, as shown in Figure 5-1.

Control

Class

UserControl

Class

Lesson 1: Working with User Controls

393

TemplateControl

Abstract Class

 Control

 TemplateControl

Properties

Application

Attributes

Cache
CachePolicy

IsPostBack
Request

Response
Server

Session
Trace

Methods

DesignerInitialize

InitializeAsUserControl

MapPath

UserControl

IAttributeAccessor
INamingContainer

IUserControlDesignerAccessor

Figure 5-1 The UserControl class hierarchy.

MORE INFO User Controls

For more information on the User Controls, visit http://msdn2.microsoft.com/en-us/library/

fb3w5b53.aspx.

Creating a User Control

User controls have a standard naming convention, which uses an .ascx extension to

ensure that the control is not executed in a stand-alone fashion. You can create a user

control in Visual Studio 2005 by choosing Website, Add New Item, Web User Con

trol. On the surface, it appears that a new Web page was added. However, a quick

glance at the HTML reveals a Control directive instead of a Page directive, as follows:

'VB

<%@ Control Language="VB"

AutoEventWireup="false"

CodeFile="MyControl.ascx.vb"

Inherits="MyControl" %>

//C#

<%@ Control Language="C#"

AutoEventWireup="true"

CodeFile="MyControl.ascx.cs"

Inherits="MyControl" %>

http://msdn2.microsoft.com/en-us/library/
http://msdn2.microsoft.com/en-us/library/

394

Chapter 5 Creating Custom Web Controls

All text and controls that are added to this user control are rendered on the page that

the control is added to. For example, a Label called lblName and a TextBox called txt-

Name are placed on the user control, as shown below, and the user control can be

added to any Web page where required.

'VB

<%@ Control Language="VB" AutoEventWireup="false"

 CodeFile="MyControl.ascx.vb" Inherits="MyControl" %>

<asp:Label ID="lblName" runat="server" Text="Label">

</asp:Label>

<asp:TextBox ID="txtName" runat="server" ></asp:TextBox>

//C#

<%@ Control Language="C#" AutoEventWireup="true"

 CodeFile="MyControl.ascx.cs" Inherits="MyControl" %>

<asp:Label ID="lblName" runat="server" Text="Label">

</asp:Label>

<asp:TextBox ID="txtName" runat="server"></asp:TextBox>

Creating a User Control from a Web Page

In addition to explicitly creating a user control, you can also convert a Web page to a

user control. The primary benefit is that you can do your prototyping and testing

without having to deal with placing the control on a Web page.

The procedure for converting a Web page to a user control is as follows:

1. Remove the <html>, <body>, and <form> begin and end tags.

2. Change the @Page directive at the top of the file to an @Control directive.

3. Change the file extension of your Web page from .aspx to.ascx.

4. In the @Control directive, change Inherits="System.Web.UI.Page" to Inher

its="System.Web.UI.UserControl".

Adding a User Control to a Page

You can add a user control to a Web page by simply dragging it from the Solution

Explorer and dropping it on a Web page. When you add the user control to the page,

a look at the HTML reveals the following additions to the page:

<%@ Page Language="language" AutoEventWireup="false"

 CodeFile="Default.aspx.language" Inherits="_Default" %>

<%@ Register Src="MyControl.ascx" TagName="MyControl" TagPrefix="uc1" %>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

 <div>

Lesson 1: Working with User Controls

395

 <uc1:MyControl ID="MyControl1" runat="server" />

 </div>

</form>

</body>

</html>

Notice the @Register directive at the top of the page. This is a requirement to place the

controls on the page. The TagPrefix attribute is a namespace identifier for the control.

The default TagPrefix is uc1 (as in User Control 1) and is changeable. The TagName

attribute is the name of the control to use. The Src attribute is the location of the user

control. The instance of MyControl is in the form tag. Notice that the ID is automati

cally created as MyControl1, the next instance will be called MyControl2, and so on.

Accessing Data from the User Control

If this user control is placed on a Web page, the TextBox and Label are visible to the

user, but how can the name be retrieved? The TextBox and Label controls are declared

as protected members on the Web page, which means that they are accessible only to

the MyControl class and to classes that inherit from the control. To access the data for

the Label and TextBox, you could expose the properties that are required, such as the

Text property of the txtName TextBox and the Text property of the lblName Label. The

user control is a class and can contain properties and methods. You can add proper

ties to the user controls called UserName and UserCaption, as follows:

'VB

Partial Class MyControl

Inherits System.Web.UI.UserControl

Public Property UserCaption() As String

 Get

 Return lblName.Text

 End Get

 Set(ByVal value As String)

 lblName.Text = value

 End Set

End Property

Public Property UserName() As String

 Get

 Return txtName.Text

396

Chapter 5 Creating Custom Web Controls

 End Get

 Set(ByVal value As String)

 txtName.Text = value

 End Set

End Property

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class MyControl : System.Web.UI.UserControl

{

public string UserCaption

{

 get { return lblName.Text; }

 set { lblName.Text = value; }

}

public string UserName

{

 get { return txtName.Text; }

 set { txtName.Text = value; }

}

}

To demonstrate the new properties, the MyControl user control, a Button control, and

a Label control are added to the Web page, and code is added to the code-behind page

of the Web page to retrieve the UserName, as follows:

ASPX File
'VB

<%@ Page Language="VB" AutoEventWireup="true"

 CodeFile="MyControlPropertyTest.aspx.vb

 Inherits="MyControlPropertyTest" %>

<%@ Register Src="MyControl.ascx" TagName="MyControl" TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

Lesson 1: Working with User Controls

397

 <asp:Button ID="Button1" runat="server" Text="Get Name"

 OnClick="Button1_Click" />

 <uc1:MyControl ID="MyControl1" runat="server" />

 <asp:Label ID="Label1" runat="server" ></asp:Label>

 </div>

 </form>

</body>

</html>

//C#

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="MyControlPropertyTest.aspx.cs"

Inherits="MyControlPropertyTest" %>

<%@ Register Src="MyControl.ascx" TagName="MyControl" TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Button ID="Button1" runat="server" Text="Get Name"

 OnClick="Button1_Click" />

 <uc1:MyControl ID="MyControl1" runat="server" />

 <asp:Label ID="Label1" runat="server"></asp:Label>

 </div>

 </form>

</body>

</html>

Code-Behind
'VB

Partial Class MyControlPropertyTest

 Inherits System.Web.UI.Page

398

Chapter 5 Creating Custom Web Controls

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 MyControl1.UserCaption = "Enter User Name:"

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 Label1.Text = MyControl1.UserName

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class MyControlPropertyTest : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 MyControl1.UserCaption = "Enter User Name:";

}

protected void Button1_Click(object sender, EventArgs e)

{

 Label1.Text = MyControl1.UserName;

}

}

Positioning User Controls

When a user control is dropped onto a Web page, you always position it using some

of the same techniques as you would use to position other controls using Flow Lay

out, such as placing the user control in an HTML table.

You’ll soon find that you cannot position the user control using Dynamic Hypertext

Markup Language (DHTML) to set the absolute positioning using the Style property

because the user control does not automatically add an outer tag for the contents of

the control that could be assigned a Style. You can set the positioning using DHTML

if you add a Panel control to the Web page and place the user control into the Panel.

This allows the Panel and its contents to be positioned.

User Control Events

Lesson 1: Working with User Controls

399

User controls can have their own events and cause a postback of the Web page’s form

data. It’s interesting to note that user controls do not contain form server controls,

since there can only be one form server control on a Web page. User controls are

aware of the life cycle of the page, and the user control has many of the same events

that the page has, such as the Init and Load events.

A user control can also handle its own events. In the following example, a user control

called HiControl.ascx is created containing a TextBox control, a Button control, and a

Label control. When the Button control is clicked, the user control handles the Button

control’s Click event to populate the Label control with a hello message.

ASCX File
'VB

<%@ Control Language="VB" AutoEventWireup="true"

 CodeFile="HiControl.ascx.vb" Inherits="HiControl" %>

<asp:TextBox ID="TextBox1" runat="server" ></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Say Hi" />

<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

//C#

<%@ Control Language="C#" AutoEventWireup="true"

 CodeFile="HiControl.ascx.cs" Inherits="HiControl" %>

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Say Hi"

 OnClick="Button1_Click" />

<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

Code-Behind
'VB

Partial Class HiControl

 Inherits System.Web.UI.UserControl

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 Label1.Text = "Hi " + TextBox1.Text

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

400

Chapter 5 Creating Custom Web Controls

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class HiControl : System.Web.UI.UserControl

{

protected void Button1_Click(object sender, EventArgs e)

{

 Label1.Text = "Hi " + TextBox1.Text;

}

}

It’s interesting to note that the code for Button control’s Click event has been encapsu

lated into the user control. Figure 5-2 shows the user control and the rendered output

after the control was placed onto a simple Web page. Encapsulation of the user con

trol’s event code can help to simplify the page.

Figure 5-2 This user control contains encapsulated code to process the Button control’s Click event.

Dynamically Loading Controls

Like other server controls, user controls can be loaded dynamically. Loading controls

dynamically can be useful in situations where a variable quantity of user controls is

displayed on the page. In the following example, the Web page loads two instances of

MyControl onto the page. The UserName of the first instance is initialized.

'VB

Partial Class HiControlDynamicLoad

Inherits System.Web.UI.Page

Lesson 1: Working with User Controls

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 'Populate the form.

 Dim c1 As MyControl = _

 CType(LoadControl("MyControl.ascx"), MyControl)

 c1.UserName = "Glenn"

 form1.Controls.Add(c1)

 Dim c2 As MyControl = _

 CType(LoadControl("MyControl.ascx"), MyControl)

 form1.Controls.Add(c2)

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class HiControlDynamicLoad : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

 //Populate the form.

 MyControl c1 =

 (MyControl)LoadControl("MyControl.ascx");

 c1.UserName = "Glenn";

 form1.Controls.Add(c1);

 MyControl c2 =

 (MyControl)LoadControl("MyControl.ascx");

 form1.Controls.Add(c2);

}

}

401

The LoadControl method loads the control into memory, but this method returns a

System.Web.UI.Control. To see the properties of MyControl, the returned Control object

must be cast as a MyControl object. This is done using the CType function in Microsoft

Visual Basic (VB) or the casting syntax in C#. The user control contains server con

trols, so it must be loaded into the controls collection of the form as shown.

402

Chapter 5 Creating Custom Web Controls

Raising Events to the Page

A common requirement is to be able to place a control, such as a Button control, in the

user control, but it’s not known how the control will be implemented when the devel

oper is creating the user control. This problem can be solved by raising the event to

the Web page. For example, you may have a Button in the user control that raises an

event when the Button is clicked and passes the contents of the TextBox. The following

code shows a user control with a button called btnMessage that raises an event called

SendMessage. The SendMessage event passes the name that was typed into the TextBox.

ASCX File
'VB

<%@ Control Language="VB" AutoEventWireup="false"

 CodeFile="MessageControl.ascx.vb" Inherits="MessageControl" %>

<asp:Label ID="lblName" runat="server" Text="Enter Name: "></asp:Label>

<asp:TextBox ID="txtName" runat="server" ></asp:TextBox>

<asp:Button ID="btnMessage" runat="server" Text="Send Message" />

//C#

<%@ Control Language="C#" AutoEventWireup="true"

 CodeFile="MessageControl.ascx.cs" Inherits="MessageControl" %>

<asp:Label ID="lblName" runat="server" Text="Enter Name: "></asp:Label>

<asp:TextBox ID="txtName" runat="server" ></asp:TextBox>

<asp:Button ID="btnMessage" runat="server" Text="Send Message"

 OnClick="btnMessage_Click" />

Code-Behind
'VB

Partial Class MessageControl

Inherits System.Web.UI.UserControl

Public Event SendMessage(ByVal UserName As String)

Public Property UserName() As String

 Get

 Return txtName.Text

 End Get

 Set(ByVal Value As String)

 txtName.Text = Value

 End Set

End Property

Private Sub btnMessage_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnMessage.Click

 RaiseEvent SendMessage(txtName.Text)

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

Lesson 1: Working with User Controls

403

public delegate void SendMessageHandler(string message);

public partial class MessageControl : System.Web.UI.UserControl

{

public event SendMessageHandler SendMessage;

protected void btnMessage_Click(object sender, EventArgs e)

{

 if (SendMessage != null) SendMessage(txtName.Text);

}

}

The event must always be declared as public at the top of the user control class. The

btnMessage control’s Click event handler has been programmed to raise the event,

passing the contents of txtName.Text. The user control can be added to a Web page,

and code can be added to subscribe to the SendMessage event, as shown in the follow

ing code sample:

ASPX File
'VB

<%@ Page Language="VB" AutoEventWireup="false"

 CodeFile="MessageControlTest.aspx.vb" Inherits="MessageControlTest" %>

<%@ Register Src="MessageControl.ascx"

 TagName="MessageControl" TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <uc1:MessageControl ID="MessageControl1" runat="server" />

 <asp:Label ID="lblResult" runat="server" Text=""></asp:Label>

404

Chapter 5 Creating Custom Web Controls

 </div>

 </form>

</body>

</html>

//C#

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="MessageControlTest.aspx.cs" Inherits="MessageControlTest" %>

<%@ Register Src="MessageControl.ascx"

 TagName="MessageControl" TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <uc1:MessageControl ID="MessageControl1" runat="server" />

 <asp:Label ID="lblResult" runat="server" Text=""></asp:Label>

 </div>

 </form>

</body>

</html>

Code-Behind
'VB

Partial Class MessageControlTest

 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 AddHandler MessageControl1.SendMessage, addressof MessageReceived

End Sub

private Sub MessageReceived(message as String)

 lblResult.Text = message

End Sub

End Class

//C#

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

Lesson 1: Working with User Controls

405

public partial class MessageControlTest : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

{

 MessageControl1.SendMessage +=

 delegate(string message){ lblResult.Text = message; };

}

}

Figure 5-3 shows the completed Web page after a name was entered into the TextBox

and the Button was clicked.

Figure 5-3 The user control raises the SendMessage event that can be handled by the Web page.

It’s interesting to note the differences in implementation based on the programming

language. In VB, the event was easy to create because the creation of an event causes

the VB compiler to automatically create a delegate to handle the event, whereas C#

requires you to create the delegate. When it’s time to implement the user control and

its SendMessage event, VB requires you to create an event handler method to populate

the Label control with the message, whereas C# lets you implement an anonymous

method to handle the event.

406

Chapter 5 Creating Custom Web Controls

Creating a Templated User Control

A templated user control provides separation of control data from its presentation,

meaning that a templated user control does not provide a default user interface. For

example, if you know that you need to display your shipper’s information, such as the

shipper ID, the shipper name, and the shipper phone number, but you don’t know

how the page designer wants to format this information, you could create a templated

user control called ShipperControl that allows the page designer to supply the format

for the shipper data using a template.

Like user controls, the templated user control is only reusable in the same Web site.

If you want reusability across multiple sites, consider implementing the templated

control that’s described near the end of this chapter.

The templated user control must provide a container class that is a naming container

and has properties that are accessible to the host page. The template contains the user

interface for the templated user control and is supplied by the page developer at

design time. A template can contain controls and markup. You can create a templated

user control by following these steps:

1. Add a user control file to your Web application.

2. In the .ascx file, place an ASP.NET Placeholder control where you want the tem

plate to appear.

3. In the code-behind file, implement a property of type ITemplate.

4. Add a new class to the App_Code folder in your Web site that contains the tem

plate’s naming container class. This class inherits from Control, implements the

INamingContainer, and contains a public property for each data element that is

visible to the template. The container control contains an instance of the tem

plate when it is rendered.

5. Apply the TemplateContainerAttribute to the ITemplate property and pass the type

of the template’s naming container class as the argument to the constructor of

the attribute.

6. Also, apply the PersistenceModeAttribute to the ITemplate property and pass the

enumeration value of PersistenceMode.InnerProperty into its constructor.

7. In the user control’s code-behind page, add public properties that let you pass

your data to the template’s naming container class so the data is available in the

template.

Lesson 1: Working with User Controls

407

8. In the Page_Init method of the user control, test for the ITemplate property

being set. If the ITemplate property is set, create an instance of the naming con

tainer class and create an instance of the template in the naming container.

Add the naming container instance to the Controls property of the PlaceHolder

server control.

The following code sample defines a templated user control called ShipperControl.ascx

that allows you to set a ShipperID, ShipperName, and ShipperPhone and allows the

Web page developer to create a template to define the output.

ASCX File
'VB

<%@ Control Language="VB" CodeFile="ShipperControl.ascx.vb"

 Inherits="ShipperControl" %>

<asp:PlaceHolder ID="ShipperHolder" runat="server" />

//C#

<%@ Control Language="C#" CodeFile="ShipperControl.ascx.cs"

 Inherits="ShipperControl" %>

<asp:PlaceHolder ID="ShipperHolder" runat="server" />

Code-Behind
'VB

Partial Class ShipperControl

Inherits System.Web.UI.UserControl

<PersistenceMode(PersistenceMode.InnerProperty)> _

<TemplateContainer(GetType(ShipperContainer))> _

Public Property ShipperTemplate() As ITemplate

 Get

 Return _shipperTemplate

 End Get

 Set(ByVal value As ITemplate)

 _shipperTemplate = value

 End Set

End Property

Private _shipperTemplate As ITemplate

Public Property ShipperId() As Integer

 Get

 Return _shipperId

 End Get

 Set(ByVal value As Integer)

 _shipperId = value

 End Set

End Property

Private _shipperId As Integer

Public Property ShipperName() As String

 Get

408

Chapter 5 Creating Custom Web Controls

 Return _shipperName

 End Get

 Set(ByVal value As String)

 _shipperName = value

 End Set

End Property

Private _shipperName As String

Public Property ShipperPhone() As String

 Get

 Return _shipperPhone

 End Get

 Set(ByVal value As String)

 _shipperPhone = value

 End Set

End Property

Private _shipperPhone As String

Public Sub Page_Init(ByVal sender As Object, _

 ByVal e As EventArgs) Handles Me.Init

 ShipperHolder.Controls.Clear()

 If ShipperTemplate Is Nothing Then

 ShipperHolder.Controls.Add(_

New LiteralControl("No Template Defined"))

 Return

 End If

 Dim s As New ShipperContainer(_

 ShipperId, ShipperName, ShipperPhone)

 ShipperTemplate.InstantiateIn(s)

 ShipperHolder.Controls.Add(s)

End Sub

End Class

//C#

using System;

using System.Web.UI;

public partial class ShipperControl : System.Web.UI.UserControl

{

[PersistenceMode(PersistenceMode.InnerProperty)]

[TemplateContainer(typeof(ShipperContainer))]

public ITemplate ShipperTemplate

{

 get { return _shipperTemplate; }

 set { _shipperTemplate = value; }

}

private ITemplate _shipperTemplate;

public int ShipperId

{

 get { return _shipperId; }

 set { _shipperId = value; }

}

private int _shipperId;

public string ShipperName

{

 get { return _shipperName; }

 set { _shipperName = value; }

}

private string _shipperName;

public string ShipperPhone

{

 get { return _shipperPhone; }

 set { _shipperPhone = value; }

}

private string _shipperPhone;

public void Page_Init()

{

 ShipperHolder.Controls.Clear();

 if (ShipperTemplate == null)

{

 ShipperHolder.Controls.Add(

Lesson 1: Working with User Controls

409

 }

 new LiteralControl("No Template Defined"));

 return;

}

 ShipperContainer s = new ShipperContainer(

 ShipperId, ShipperName, ShipperPhone);

 ShipperTemplate.InstantiateIn(s);

 ShipperHolder.Controls.Add(s);

}

Notice that this code requires a template-naming container called ShipperContainer.

This code is placed in its own class file in the App_Code folder. The following is the

contents of the ShipperContainer class:

'VB

Imports Microsoft.VisualBasic

Public Class ShipperContainer

Inherits Control

Implements INamingContainer

Public Sub New(ByVal _shipperId As Integer, _

 ByVal _shipperName As String, ByVal _shipperPhone As String)

 Me._shipperId = _shipperId

 Me._shipperName = _shipperName

410

Chapter 5 Creating Custom Web Controls

 Me._shipperPhone = _shipperPhone

End Sub

Public ReadOnly Property ShipperId() As Integer

 Get

 Return _shipperId

 End Get

End Property

Private _shipperId As Integer

Public ReadOnly Property ShipperName() As String

 Get

 Return _shipperName

 End Get

End Property

Private _shipperName As String

Public ReadOnly Property ShipperPhone() As String

 Get

 Return _shipperPhone

 End Get

End Property

Private _shipperPhone As String

End Class

//C#

using System;

using System.Web.UI;

public class ShipperContainer : Control, INamingContainer

{

public ShipperContainer(int _shipperId,

 string _shipperName, string _shipperPhone)

{

 ShipperId = _shipperId;

 ShipperName = _shipperName;

 ShipperPhone = _shipperPhone;

}

public int ShipperId

{

 get { return _shipperId; }

 set { _shipperId = value; }

}

private int _shipperId;

public string ShipperName

{

 get { return _shipperName; }

 set { _shipperName = value; }

}

private string _shipperName;

}

public string ShipperPhone

{

 get { return _shipperPhone; }

 set { _shipperPhone = value; }

}

private string _shipperPhone;

Lesson 1: Working with User Controls

411

Using the Templated User Control

Like the user control, the templated user must be used within the same project and

can be used by dragging and dropping the templated user control from the Solution

Explorer to a Web page. After the templated user control is added, you can set its

properties and add a template. The following is a Web page that contains the Shipper-

Control with a template to format the shipper data:

'VB

<%@ Page Language="VB" Debug="true" AutoEventWireup="true"%>

<%@ Register TagPrefix="uc1" TagName="ShipperControl"

Src="~/ShipperControl.ascx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml">

<script runat="server">

Sub Page_Load()

 DataBind()

End Sub 'Page_Load

</script>

<head runat="server">

<title>ShipperControl Test</title>

</head>

<body>

<form id="form1" runat="server">

 <uc1:ShipperControl ID="ShipperControl1" runat="server"

ShipperId="1" ShipperName="Speedy Express"

ShipperPhone="(503) 555-9831">

 <ShipperTemplate>

<h1>Shipper Information</h1>

 ID:

<%# Container.ShipperId %>

 Name:

<%# Container.ShipperName %>

 Phone:

<%# Container.ShipperPhone %>

412

Chapter 5 Creating Custom Web Controls

 </ShipperTemplate>

 </uc1:ShipperControl>

</form>

</body>

</html>

//C#

<%@ Page Language="C#" AutoEventWireup="true" %>

<%@ Register Src="ShipperControl.ascx" TagName="ShipperControl"

TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Error! Hyperlink reference not valid.

<script runat="server">

public void Page_Load()

{

 DataBind();

}

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

 <uc1:ShipperControl ID="ShipperControl1" runat="server"

ShipperId="1" ShipperName="Speedy Express"

ShipperPhone="(503) 555-9831">

 <ShipperTemplate>

<h1>Shipper Information</h1>

 ID:

<%# Container.ShipperId %>

 Name:

<%# Container.ShipperName %>

 Phone:

<%# Container.ShipperPhone %>

 </ShipperTemplate>

 </uc1:ShipperControl>

</form>

</body>

</html>

Note that the templated user control does not display in Design view, but if you run

the Web page, it displays properly, as shown in Figure 5-4.

Lesson 1: Working with User Controls

Figure 5-4 The templated user control is rendered to display the supplier data.

Quick Check

413

1. What is the easiest way to combine several TextBoxes and Labels onto a sin

gle control that can be simply dragged onto a Web page without writing

much code?

2. What type of control can be used to provide data that is to be rendered but

allows the Web page designer to specify the format of the data?

Quick Check Answers

1. Create a UserControl.

2. A templated user control.

Lab: Working With User Controls

In this lab, you create a user control for collecting address information and implement

the control to collect bill-to and ship-to information.

� Exercise 1: Create the Web Site and the User Control

In this exercise, you create the Web site and create the user control.

1. Open Visual Studio 2005; create a new Web site called WorkingWithUserControls

using your preferred programming language. The new Web site is created, and a

Web page called Default.aspx is displayed.

2. Add a Web User Control called AddressControl.ascx to the Web site by right-

clicking the Web site in the Solution Explorer window, selecting Add New Item,

and then selecting Web User Control; assign AddressControl.ascx as the name.

An empty window is displayed for the new user control.

414

Chapter 5 Creating Custom Web Controls

3. In the Source view of the user control, add the following markup to create an

HTML table for the address information, and add controls to the table to collect

the address information.

AddressControl.ascx File
'VB

<%@ Control Language="VB" AutoEventWireup="false"

CodeFile="AddressControl.ascx.vb" Inherits="AddressControl" %>

<table>

<tr>

 <td colspan="2">

 <asp:Label ID="lblTitle" runat="server" Text=""

 style="font-weight: bold; font-size: large;" >

 </asp:Label>

 </td>

</tr>

<tr>

 <td>

 Name:

 </td>

 <td>

 <asp:TextBox ID="txtName" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

 <td>

 Address:

 </td>

 <td >

 <asp:TextBox ID="txtAddress1" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

 <td>

 </td>

 <td >

 <asp:TextBox ID="txtAddress2" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

 <td colspan="2">

 City: <asp:TextBox ID="txtCity" width="150px" runat="server">

 </asp:TextBox>

 State:

 <asp:DropDownList ID="ddlState" width="50px" runat="server">

 <asp:ListItem Value="AK">AK</asp:ListItem>

Lesson 1: Working with User Controls

 <asp:ListItem Value="AZ">AZ</asp:ListItem>

 <asp:ListItem Value="OH" Selected="True">OH</asp:ListItem>

 <asp:ListItem Value="MA">MA</asp:ListItem>

 <asp:ListItem Value="NH">NH</asp:ListItem>

 <asp:ListItem Value="WA">WA</asp:ListItem>

 </asp:DropDownList>

 Zip: <asp:TextBox ID="txtZip" width="80px" runat="server">

 </asp:TextBox>

 </td>

</tr>

</table>

//C#

<%@ Control Language="C#" AutoEventWireup="true"

CodeFile="AddressControl.ascx.cs" Inherits="AddressControl" %>

<table>

<tr>

 <td colspan="2">

 <asp:Label ID="lblTitle" runat="server" Text=""

 style="font-weight: bold; font-size: large;" >

 </asp:Label>

 </td>

</tr>

<tr>

 <td>

 Name:

 </td>

 <td>

 <asp:TextBox ID="txtName" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

 <td>

 Address:

 </td>

 <td >

 <asp:TextBox ID="txtAddress1" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

 <td>

 </td>

 <td >

 <asp:TextBox ID="txtAddress2" width="300px" runat="server">

 </asp:TextBox>

 </td>

</tr>

<tr>

415

416

Chapter 5 Creating Custom Web Controls

 <td colspan="2">

 City: <asp:TextBox ID="txtCity" width="150px" runat="server">

 </asp:TextBox>

 State:

 <asp:DropDownList ID="ddlState" width="50px" runat="server">

 <asp:ListItem Value="AK">AK</asp:ListItem>

 <asp:ListItem Value="AZ">AZ</asp:ListItem>

 <asp:ListItem Value="OH" Selected="True">OH</asp:ListItem>

 <asp:ListItem Value="MA">MA</asp:ListItem>

 <asp:ListItem Value="NH">NH</asp:ListItem>

 <asp:ListItem Value="WA">WA</asp:ListItem>

 </asp:DropDownList>

 Zip: <asp:TextBox ID="txtZip" width="80px" runat="server">

 </asp:TextBox>

 </td>

</tr>

</table>

4. Figure 5-5 shows what the UI of your user control should look like in Design

view.

Figure 5-5 The UI of the AddressControl.ascx file in Design view.

5. In the code-behind for the user control, add public properties to allow the values

of the Title, Name, Address1, Address2, City, State, and Zip to be read and set.

Your code-behind page should look like the following:

'VB

Partial Class AddressControl

Inherits System.Web.UI.UserControl

Public Property Title() As String

 Get

 Return lblTitle.Text

 End Get

 Set(ByVal value As String)

 lblTitle.Text = value

 End Set

End Property

Public Property Name() As String

 Get

 Return txtName.Text

 End Get

 Set(ByVal value As String)

 txtName.Text = value

 End Set

End Property

Public Property Address1() As String

 Get

 Return txtAddress1.Text

 End Get

 Set(ByVal value As String)

 txtAddress1.Text = value

 End Set

End Property

Public Property Address2() As String

 Get

 Return txtAddress2.Text

 End Get

 Set(ByVal value As String)

 txtAddress2.Text = value

 End Set

End Property

Public Property City() As String

 Get

 Return txtCity.Text

 End Get

 Set(ByVal value As String)

 txtCity.Text = value

 End Set

End Property

Public Property State() As String

 Get

 Return ddlState.SelectedValue

 End Get

 Set(ByVal value As String)

 ddlState.SelectedValue = value

 End Set

End Property

Lesson 1: Working with User Controls

417

418

Chapter 5 Creating Custom Web Controls

Public Property Zip() As String

 Get

 Return txtZip.Text

 End Get

 Set(ByVal value As String)

 txtZip.Text = value

 End Set

End Property

End Class

//C#

using System;

using System.Web.UI;

public partial class AddressControl : System.Web.UI.UserControl

{

public string Title

{

 get { return lblTitle.Text; }

 set { lblTitle.Text = value; }

}

public string Name

{

 get { return txtName.Text; }

 set { txtName.Text = value; }

}

public string Address1

{

 get { return txtAddress1.Text; }

 set { txtAddress1.Text = value; }

}

public string Address2

{

 get { return txtAddress2.Text; }

 set { txtAddress2.Text = value; }

}

public string City

{

 get { return txtCity.Text; }

 set { txtCity.Text = value; }

}

public string State

{

 get { return ddlState.SelectedValue; }

 set { ddlState.SelectedValue = value; }

}

}

public string Zip

{

 get { return txtZip.Text; }

 set { txtZip.Text = value; }

}

Lesson 1: Working with User Controls

419

� Exercise 2: Employ the User Control

In this exercise, you add multiple instances of AddressControl.ascx to the

Default.aspx Web page and access their properties.

1. Open the Default.aspx Web page.

2. From the Solution Explorer window, drag the AddressControl.ascx file onto the

Web page, change its ID property to addBillTo, and change the Title property to

Bill To Address.

3. Add a Button control to the Web page and set its Text property to Copy Bill To

Address -> Ship To Address.

4. From the Solution Explorer window, drag another AddressControl.ascx file onto

the Web page, change its ID property to addShipTo, and change the Title prop

erty to Ship To Address. Figure 5-6 shows what your Web page should look like.

Figure 5-6 The Default.aspx page contains two instances of the AddressControl.ascx file.

420

Chapter 5 Creating Custom Web Controls

5. Add code to the Button control’s Click event handler that copies the address

properties from the addBillTo control to addShipTo control. Your code-behind

page should look like the following:

'VB

Partial Class _Default

 Inherits System.Web.UI.Page

Protected Sub btnCopy_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles btnCopy.Click

 addShipTo.Name = addBillTo.Name

 addShipTo.Address1 = addBillTo.Address1

 addShipTo.Address2 = addBillTo.Address2

 addShipTo.City = addBillTo.City

 addShipTo.State = addBillTo.State

 addShipTo.Zip = addBillTo.Zip

End Sub

End Class

//C#

using System;

using System.Web.UI;

public partial class _Default : System.Web.UI.Page

{

protected void btnCopy_Click(object sender, EventArgs e)

{

 addShipTo.Name = addBillTo.Name;

 addShipTo.Address1 = addBillTo.Address1;

 addShipTo.Address2 = addBillTo.Address2;

 addShipTo.City = addBillTo.City;

 addShipTo.State = addBillTo.State;

 addShipTo.Zip = addBillTo.Zip;

}

}

6. View the Web page. Notice that the proper titles are displayed.

7. Try typing a bill-to address and clicking the Button control to copy the informa

tion to the ship-to address. This shows that the properties can be read and set.

Lesson 2: Working with Custom Web Server Controls

Lesson 2: Working with Custom Web Server Controls

423

In this lesson, you learn how to create custom controls that inherit from the WebControl

class. These controls include composite controls and templated controls. You also

learn to make use of these controls in your Web page development efforts.

After this lesson, you will be able to:

■ Create a custom Web server control.

■ Add custom Web server controls to a Web page.

■ Individualize a custom Web server control.

■ Create a custom designer for a custom Web server control.

Estimated lesson time: 60 minutes

Employing Custom Web Server Controls

A custom Web server control is a control that inherits from the WebServer control.

This book has already covered many of the built-in Web server controls, so you should

be familiar with the behaviors that they provide. Although you could specify that your

custom control inherits from the WebServer class’s parent class, the Control class, you

should explore the class hierarchy and inherit from the class that provides the most

useable benefits without going so far as to inherit from a class that provides many fea

tures that won’t be used by your class. The primary benefit that the WebControl class

provides is styles, which include UI-related properties such as BackColor, ForeColor,

Font, Height, and Width.

An ASP.NET Web server control renders markup as well as client-side JavaScript. You

can override the Control class’ Render method to provide the markup via the Html-

TextWriter parameter that is passed to the method.

Creating a Custom Web Server Control

The two common approaches to creating a custom Web server control are to inherit

from an existing control or to create a Web server control that inherits directly from

WebControl. Regardless of the approach that you take, you should consider the reus

ability of the control. If you want to use your custom Web server control in multiple

Web sites, you should place the new custom Web server control class in a Class Library

project to create a .dll that you can share. If you only need to use the custom Web server

control in the current Web site, you can simply add the class to the Web site.

424

Chapter 5 Creating Custom Web Controls

Inheriting from Existing Web Server Controls

You can easily inherit from an existing control to add more properties, methods, and

events. You can also override existing methods and properties to provide different

behaviors. For example, maybe you want to create a labeled text box that exposes

LabelText and LabelWidth properties and renders the LabelText in a span tag that has

the width set before the performing the usual text box rendering. This can help min

imize the use of tables for formatting because setting the width of the span tag assures

that the TextBox controls line up vertically regardless of the text that is placed into the

LabelText property. The following code shows how you can inherit from the TextBox

control and add new properties called LabelText and LabelWidth. The Render method

is overridden to add the span tag to the HTML output with the proper settings to call

the TextBox control’s Render method.

'VB

Imports Microsoft.VisualBasic

Public Class LabeledTextBox

Inherits TextBox

Public Property LabelText() As String

 Get

 Return _labelText

 End Get

 Set(ByVal value As String)

 _labelText = value

 End Set

End Property

Private _labelText As String

Public Property LabelWidth() As Integer

 Get

 Return _labelWidth

 End Get

 Set(ByVal value As Integer)

 _labelWidth = value

 End Set

End Property

Private _labelWidth As Integer

Protected Overrides Sub Render(ByVal writer As HtmlTextWriter)

 writer.Write(_

"{1} " _

, LabelWidth, LabelText)

 MyBase.Render(writer)

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

Lesson 2: Working with Custom Web Server Controls

425

public class LabeledTextBox : TextBox

{

public string LabelText

{

 get { return _labelText; }

 set { _labelText = value; }

}

private string _labelText;

public int LabelWidth

{

 get { return _labelWidth; }

 set { _labelWidth = value; }

}

private int _labelWidth;

protected override void Render(HtmlTextWriter writer)

{

 writer.Write(

@"{1} "

,LabelWidth, LabelText);

 base.Render(writer);

}

}

If this class is in the current Web site application, you can dynamically create

instances of the control as shown in the following code sample for the LabeledText-

BoxTest.aspx file:

'VB

Partial Class LabeledTextBoxTest

Inherits System.Web.UI.Page

Protected Sub Page_Init(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Init

 Dim width As Integer = 150

 Dim prompt1 As New LabeledTextBox()

 prompt1.LabelText = "Enter Name:"

 prompt1.LabelWidth = width

 form1.Controls.Add(prompt1)

 Dim brk As New LiteralControl("
")

 form1.Controls.Add(brk)

 Dim prompt2 As New LabeledTextBox()

 prompt2.LabelText = "Enter Address:"

426

Chapter 5 Creating Custom Web Controls

 prompt2.LabelWidth = width

 form1.Controls.Add(prompt2)

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class LabeledTextBoxTest : System.Web.UI.Page

{

protected void Page_Init(object sender, EventArgs e)

{

 int width = 150;

 LabeledTextBox prompt1 = new LabeledTextBox();

 prompt1.LabelText = "Enter Name:";

 prompt1.LabelWidth = width;

 form1.Controls.Add(prompt1);

 LiteralControl brk = new LiteralControl("
");

 form1.Controls.Add(brk);

 LabeledTextBox prompt2 = new LabeledTextBox();

 prompt2.LabelText = "Enter Address:";

 prompt2.LabelWidth = width;

 form1.Controls.Add(prompt2);

}

}

Figure 5-7 shows the rendered Web page. When this Web page is run, the two

LabeledTextBox controls have their TextBox controls lined up vertically because the

LabelWidth property is set for these controls.

Figure 5-7 The rendered LabeledTextBox controls have TextBox controls that line up vertically.

Lesson 2: Working with Custom Web Server Controls

Inheriting Directly from the WebControl Class

427

In addition to inheriting from an existing Web control, you can inherit directly from

the WebControl class, which may be desirable when there is no control that currently

provides behavior like the control that you want to implement.

When inheriting from the WebControl class, you must override the Render method to

provide the desired output. The following is a code sample of LogoControl that con

tains a property for the LogoUrl and the CompanyName:

'VB

Imports Microsoft.VisualBasic

Public Class LogoControl

Inherits WebControl

Public Property LogoUrl() As String

 Get

 Return _logoUrl

 End Get

 Set(ByVal value As String)

 _logoUrl = value

 End Set

End Property

Private _logoUrl As String

Public Property CompanyName() As String

 Get

 Return _companyName

 End Get

 Set(ByVal value As String)

 _companyName = value

 End Set

End Property

Private _companyName As String

Protected Overrides Sub Render(_

 ByVal writer As System.Web.UI.HtmlTextWriter)

 writer.WriteFullBeginTag("div")

 writer.Write("
", LogoUrl)

 writer.Write(CompanyName + "
")

 writer.WriteEndTag("div")

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

428

Chapter 5 Creating Custom Web Controls

public class LogoControl : WebControl

{

public LogoControl()

{

}

public string LogoUrl

{

 get { return _logoUrl; }

 set { _logoUrl = value; }

}

private string _logoUrl;

public string CompanyName

{

 get { return _companyName; }

 set { _companyName = value; }

}

private string _companyName;

protected override void Render(HtmlTextWriter writer)

{

 writer.WriteFullBeginTag("div");

 writer.Write(@"
", LogoUrl);

 writer.Write(CompanyName + "
");

 writer.WriteEndTag("div");

}

}

When this control is rendered, a <div> tag is output to the browser; the div tag con

tains a nested img tag with the src set to the LogoUrl. Also in the div tag is the Com

panyName as text on the line that follows the image. Finally, the end tag is written for

the div tag.

If this class is in the current Web site application, you can dynamically create

instances of the control as shown in the following code sample for the LogoControl-

Test.aspx file:

'VB

Partial Class LogoControlTest

 Inherits System.Web.UI.Page

Protected Sub Page_Init(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Init

 Dim logo As New LogoControl()

 logo.CompanyName = "Northwind Traders"

 logo.LogoUrl = "NorthwindTraders.gif"

 form1.Controls.Add(logo)

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

Lesson 2: Working with Custom Web Server Controls

429

public partial class LogoControlTest : System.Web.UI.Page

{

protected void Page_Init(object sender, EventArgs e)

{

 LogoControl logo = new LogoControl();

 logo.CompanyName = "Northwind Traders";

 logo.LogoUrl = "NorthwindTraders.gif";

 form1.Controls.Add(logo);

}

}

This code creates an instance of the LogoControl, sets its properties, and adds the Logo-

Control to the form1 controls collection. The output is shown in Figure 5-8.

Figure 5-8 The rendered LogoControl inherits directly from WebControl and overrides the Render

method.

Adding a Custom Web Server Control to the Toolbox

In the previous example, the control was added to the Web page dynamically by plac

ing code in the code-behind page to instantiate and set the properties of the control.

If you choose this method, you may also want to drag and drop your custom control

from the Toolbox onto a Web page.

This basic requirement to having your Web control in the Toolbox is that the Web

control be placed into a .dll file. In the case of the previous LogoControl example, the

430

Chapter 5 Creating Custom Web Controls

LogoControl class has been added to a Class Library project called MyControlLibrary

and placed into the default namespace of MyClassLibrary. You right-click the Tool

box, select Choose Items, and browse for the MyClassLibrary.dll file to add the con

trols that are contained in this .dll file to the Toolbox.

When the custom Web server control is added to the Toolbox, it uses the default icon.

Add an attribute called ToolboxBitmap to specify the icon bitmap to use in the Tool

box. The bitmap must be 16 by 16 pixels in size. The path to the icon must be an abso

lute path with a drive letter specified. The bitmap path can also point to a .bmp file

that is an embedded resource, as long as the name of the .bmp file has the same name

as the fully qualified name of the class (classname.bmp). This means that you can add

a .bmp file to the MyControlLibrary project called LogoControl.bmp, and, in the

properties window, set the Build Action property to Embedded Resource.

The ToolboxBitmapAttribute class is located in the System.Drawing namespace in the

System.Drawing.dll assembly. The following code snippet shows the ToolboxBitmap

being set to a .bmp file that is configured to be an embedded resource. (When you use

the ToolBoxBitmapAttribute, the Attribute suffix is optional.)

'VB

<ToolboxBitmap(GetType(LogoControl), "MyControlLibrary.LogoControl.bmp")> _

Public Class LogoControl

Inherits WebControl

//C#

[ToolboxBitmap(typeof(LogoControl), "MyControlLibrary.LogoControl.bmp")]

public class LogoControl : WebControl

The DefaultProperty attribute specifies the default property of the component (as the

name implies). This is the property that is active in the Properties window when you

drop a control onto the Web page.

Individualizing a Custom Web Server Control

You can further change the way your custom server control behaves when it is

dropped onto the Web page by setting the ToolboxDataAttribute in your control class.

This attribute is used to change the markup that is generated. The following code

snippet shows the ToolboxDataAttribute implementation:

'VB

<ToolboxData(_

"<{0}:LogoControl runat=""server"" CompanyName="" "" LogoUrl="" "" />")> _

Public Class LogoControl

Inherits WebControl

//C#

[ToolboxData(

Lesson 2: Working with Custom Web Server Controls

431

@"<{0}:LogoControl runat=""server"" CompanyName="" "" LogoUrl="" "" />")]

public class LogoControl : WebControl

The placeholder {0} contains the namespace prefix as defined by the Web page

designer. Notice that the CompanyName and LogoUrl attributes are inserted automat

ically and assigned spaces.

You can also change the namespace prefix that is assigned by the Web page designer

by assigning the TagPrefixAttribute to the assembly that contains your custom control.

The following snippet shows the namespace prefix being changed to ―mcl‖ for the

controls in the MyControlLibrary project:

'VB

<Assembly: TagPrefix("MyControlLibrary", "mcl")>

//C#

[assembly: TagPrefix("MyControlLibrary", "mcl")]

With the previous changes to the LogoControl, dragging and dropping it on a Web

page generates the following markup:

<mcl:LogoControl ID="LogoControl1" runat="server"

CompanyName=" " LogoUrl=" " />

Creating a Custom Designer for a Custom Control

You can also specify a custom designer for your control that is used to render the con

trol when in design mode by adding a reference to the System.Design.dll assembly and

creating a class that inherits from the ControlDesigner class. This can be beneficial

when the normal rendering of the control may not be visible due to code that needs

to run to populate specific properties. For example, you may want to provide a custom

designer for the LogoControl that provides a default rendering when the LogoUrl prop

erty has not been set, as shown in the following code sample:

'VB

imports System.ComponentModel

public class LogoControlDesigner

Inherits System.Web.UI.Design.ControlDesigner

 private _logoControl as LogoControl

 public overrides function GetDesignTimeHtml() as String

 _logoControl = Ctype(component, LogoControl)

 if (_logoControl.LogoUrl.Trim().Length = 0) then

432

Chapter 5 Creating Custom Web Controls

return "<div id='mcl1' " _

 + "style='background-color:yellow;border-width:2px;' >" _

 + "<center>LogoControl</center>
" _

 + "<center>Please set LogoUrl property.</center>
" _

 + "</div>"

 else

return mybase.GetDesignTimeHtml()

 End If

 end function

End Class

//C#

using System;

using System.ComponentModel;

using System.Collections.Generic;

using System.Text;

namespace MyControlLibrary

{

class LogoControlDesigner : System.Web.UI.Design.ControlDesigner

{

 private LogoControl _logoControl;

 public override string GetDesignTimeHtml()

{

 if (_logoControl.LogoUrl.Trim().Length == 0)

{

return "<div id=\'mcl1\' "

 + "style=\'background-color:yellow;border-width:2px;\' >"

 + "<center>LogoControl</center>
"

 + "<center>Please set LogoUrl property.</center>
"

 + "</div>";

}

 else

{

return base.GetDesignTimeHtml();

}

}

 public override void Initialize(IComponent component)

{

 _logoControl = (LogoControl)component;

 base.Initialize(component);

 return;

 }

}

}

After the class is created, you can assign the DesignerAttribute to the LogoControl class,

as shown in the following code snippet:

'VB

Lesson 2: Working with Custom Web Server Controls

433

<Designer("MyControlLibrary.LogoControlDesigner, MyControlLibrary")> _

Public Class LogoControl

Inherits WebControl

//C#

[Designer("MyControlLibrary.LogoControlDesigner, MyControlLibrary")]

public class LogoControl : WebControl

When the LogoControl is dragged and dropped onto the Web page, the LogoUrl prop

erty is not set and the alternate rendering is provided. After the LogoUrl has been set,

the default rendering is provided.

Creating a Composite Control

A composite control is a custom Web control that contains other controls. This sounds

like a user control, but the composite control doesn’t provide the designer screen and

.ascx file that lets you drag and drop controls on it at design time. Instead, you inherit

from the CompositeControl class and add constituent controls to the Controls collection

of your class. The CompositeControl class hierarchy is shown in Figure 5-9. A composite

control can fire, handle, and bubble up events raised by child controls.

Control

Class

WebControl

Class

 Control

CompositeControl

MustInherit Class
INamingContainer

 WebControl
ICompositeControlDesignerAccessor

Properties

Controls

Methods

DataBind

New

RecreateChildControls

Render

Figure 5-9 The CompositeControl class hierarchy.

434

Chapter 5 Creating Custom Web Controls

A composite control is rendered out as a tree of constituent controls, each having its

own life cycle and, together, forming a brand-new API. Because each of the child con

trols knows how to handle its own ViewState and PostBack data, you don’t need to

write extra code to deal with this.

To create a composite control, create a class that inherits from the CompositeControl

class and overrides the CreateChildControls method. The CreateChildControls method

needs to contain the code to instantiate the child controls and set their properties. If

you want to be able to assign styles to the composite control, you should create an

instance of the Panel class to provide a container that can have attributes assigned to

it, add it to the Controls collection of your composite control, and then add your con

trols to the Panel control.

If you need to create many composite controls that have similar methods or proper

ties, consider creating a base class for your composite controls that has the common

code.

The following code sample shows a UserPasswordControl class that was added to the

App_Code of the existing Web site. This control is used to prompt for a user name and

password and also contains a submit button that can be subscribed to.

'VB

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class UserPasswordControl

Inherits CompositeControl

Implements INamingContainer

Public Event Submitted As System.EventHandler

Public Property UserName() As String

 Get

 Dim txt As TextBox

 txt = CType(Me.FindControl("UserName"), TextBox)

 Return txt.Text

 End Get

 Set(ByVal Value As String)

 Dim txt As TextBox

 txt = CType(Me.FindControl("UserName"), TextBox)

 txt.Text = Value

 End Set

End Property

Public Property Password() As String

 Get

 Dim txt As TextBox

Lesson 2: Working with Custom Web Server Controls

 txt = CType(Me.FindControl("Password"), TextBox)

 Return txt.Text

 End Get

 Set(ByVal Value As String)

 Dim txt As TextBox

 txt = CType(Me.FindControl("Password"), TextBox)

 txt.Text = Value

 End Set

End Property

Protected Overrides Sub CreateChildControls()

 Dim pnl As New Panel()

 Dim txtUserName As New TextBox()

 Dim txtPassword As New TextBox()

 Dim btnSubmit As New Button()

 AddHandler btnSubmit.Click, Addressof btnSubmit_Click

 'start control buildup

 Controls.Add(pnl)

 'add user name row

 pnl.Controls.Add(New LiteralControl("<table><tr><td>"))

 pnl.Controls.Add(New LiteralControl("User Name:"))

 pnl.Controls.Add(New LiteralControl("</td><td>"))

 pnl.Controls.Add(txtUserName)

 pnl.Controls.Add(New LiteralControl("</td></tr>"))

 'add password row

 pnl.Controls.Add(New LiteralControl("<tr><td>"))

 pnl.Controls.Add(New LiteralControl("Password:"))

 pnl.Controls.Add(New LiteralControl("</td><td>"))

 pnl.Controls.Add(txtPassword)

 pnl.Controls.Add(New LiteralControl("</td></tr>"))

 'add submit button row

 pnl.Controls.Add(New LiteralControl(_

 "<tr><td colspan=""2"" align=""center"" >"))

 pnl.Controls.Add(btnSubmit)

 pnl.Controls.Add(New LiteralControl("</td></tr></table>"))

 'setup control properties

 pnl.Style.Add("background-color", "silver")

 pnl.Style.Add("width", "275px")

 txtUserName.ID = "UserName"

 txtUserName.Style.Add("width", "170px")

 txtPassword.ID = "Password"

 txtPassword.TextMode = TextBoxMode.Password

 txtPassword.Style.Add("width", "170px")

 btnSubmit.Text = "Submit"

End Sub

Public Sub btnSubmit_Click(ByVal sender As Object, ByVal e As EventArgs)

 RaiseEvent Submitted(Me, e)

435

436

Chapter 5 Creating Custom Web Controls

End Sub

End Class

//C#

using System;

using System.ComponentModel;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Drawing;

public class UserPasswordControl : CompositeControl

{

public event System.EventHandler Submitted;

public string UserName

{

 get

{

 TextBox txt = (TextBox)FindControl("UserName");

 return txt.Text;

}

 set

{

 TextBox txt = (TextBox)FindControl("UserName");

 txt.Text = value;

}

}

public string Password

{

 get

{

 TextBox pwd = (TextBox)FindControl("Password");

 return pwd.Text;

}

 set

{

 TextBox pwd = (TextBox)FindControl("Password");

 pwd.Text = value;

}

}

protected override void CreateChildControls()

{

 Panel pnl = new Panel();

 TextBox txtUserName = new TextBox();

 TextBox txtPassword = new TextBox();

 Button btnSubmit = new Button();

 btnSubmit.Click += new EventHandler(btnSubmit_Click);

 //start control buildup

 Controls.Add(pnl);

 //add user name row

Lesson 2: Working with Custom Web Server Controls

437

}

 pnl.Controls.Add(new LiteralControl("<table><tr><td>"));

 pnl.Controls.Add(new LiteralControl("User Name:"));

 pnl.Controls.Add(new LiteralControl("</td><td>"));

 pnl.Controls.Add(txtUserName);

 pnl.Controls.Add(new LiteralControl("</td></tr>"));

 //add password row

 pnl.Controls.Add(new LiteralControl("<tr><td>"));

 pnl.Controls.Add(new LiteralControl("Password:"));

 pnl.Controls.Add(new LiteralControl("</td><td>"));

 pnl.Controls.Add(txtPassword);

 pnl.Controls.Add(new LiteralControl("</td></tr>"));

 //add submit button row

 pnl.Controls.Add(new LiteralControl(

 @"<tr><td colspan=""2"" align=""center"" >"));

 pnl.Controls.Add(btnSubmit);

 pnl.Controls.Add(new LiteralControl("</td></tr></table>"));

 //setup control properties

 pnl.Style.Add("background-color", "silver");

 pnl.Style.Add("width", "275px");

 txtUserName.ID = "UserName";

 txtUserName.Style.Add("width", "170px");

 txtPassword.ID = "Password";

 txtPassword.TextMode = TextBoxMode.Password;

 txtPassword.Style.Add("width", "170px");

 btnSubmit.Text = "Submit";

}

void btnSubmit_Click(object sender, EventArgs e)

{

 if (Submitted != null) Submitted(this, e);

}

In this code, the UserName and Password properties are exposed to give you access to

this data. An event called Submitted is also created so you can subscribe to the Submit

button’s Click event. The CreateChildControls method performs the work to instantiate

the child controls for this composite control.

This control can be tested by adding it to a Web page using the same techniques

described for custom Web controls. In the following code example, code is added in

the code-behind page of the UserPassControlTest.aspx page to create a UserPassword-

Control dynamically and set its properties. The Submitted event is used to simply dis

play the user name and password.

438

Chapter 5 Creating Custom Web Controls

'VB

Partial Class UserPasswordControlTest

Inherits System.Web.UI.Page

Protected Sub Page_Init(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Init

 Dim p As New UserPasswordControl()

 p.Style.Add("position", "absolute")

 p.Style.Add("left", "25px")

 p.Style.Add("top", "50px")

 form1.Controls.Add(p)

 AddHandler p.Submitted, AddressOf p_Submitted

End Sub

Public Sub p_Submitted(ByVal sender As Object, ByVal e As EventArgs)

 Dim p As UserPasswordControl = CType(sender, UserPasswordControl)

 Response.Write("User: " + p.UserName + " Pass: " + p.Password)

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class UserPasswordControlTest : System.Web.UI.Page

{

protected void Page_Init(object sender, EventArgs e)

{

 UserPasswordControl p = new UserPasswordControl();

 p.Style.Add("position", "absolute");

 p.Style.Add("left", "25px");

 p.Style.Add("top", "50px");

 form1.Controls.Add(p);

 p.Submitted += new EventHandler(p_Submitted);

}

void p_Submitted(object sender, EventArgs e)

{

 UserPasswordControl p = (UserPasswordControl)sender;

 Response.Write("User: " + p.UserName + " Pass: " + p.Password);

}

}

When this Web page is run, the UserPasswordControl displayed at the location is deter

mined by the Style property. After typing a user name and password, click the Submit

button to display that user name and password, as shown in Figure 5-10.

Lesson 2: Working with Custom Web Server Controls

439

Figure 5-10 The UserPasswordControl collects the user name and password and exposes the Sub

mitted event for processing of the data.

Creating a Templated Control

A templated control provides separation of control data from its presentation, which

means that a templated control does not provide a default user interface. For example,

if you know that you need to display product data, but you don’t know how the page

designer wants to format the product data, you could create a templated control

called ProductControl that allows the page designer to supply the format for the prod

uct data as a template.

The templated control must provide a naming container and a class whose properties

and methods are accessible to the host page. The template contains the user interface

for the templated user control and is supplied by the page developer at design time.

The templates can contain controls and markup. You can create a templated control

using the following steps:

1. Create a ClassLibrary (.dll) project for your templated control.

2. Add a reference to the System.Web.dll library.

3. To your project, add a container class that has public properties for the data that

you wish to be able to access via the Container object in your template.

4. In the container class file, import the System.Web.UI namespace (the C# syntax

is ―using‖).

5. Code your container class to inherit from the System.Web.UI.Control class and

implement the INamingContainer interface.

6. Add a class to the project for your templated control.

440

Chapter 5 Creating Custom Web Controls

7. In the class file, import the System.Web.UI namespace (the C# syntax is

―using‖).

8. Code your templated control to inherit from the System.Web.UI.Control class and

implement the INamingContainer interface.

9. Add the ParseChildren(true) attribute to the class. This attribute provides direc

tion to the page parser to indicate that the nested content contained within the

server control is parsed as a control and not used to set properties of the tem-

plated control.

10. Create one or more properties in the templated control class with the data type

of ITemplate and that contain(s) a template as defined by the page designer.

These properties need to have the TemplateContainer attribute set to the data

type of the container, which might be the templated control, or, you could create

a sub-container if you have repeating items to display in the template. Also, these

properties have to have the PersistenceMode attribute set to PersistenceMode.Inner-

Property, which allows page designers to add inner HTML elements to the HTML

source of the templated control.

11. Add the desired properties to the template container that are to be accessible by

the template.

12. The DataBind method must be overridden to call the EnsureChildControls

method on the base Control class.

13. The CreateChildControls method must be overridden to provide the code to

instantiate the template using the InstantiateIn method of the ITemplate inter

face. Code should also be provided for a default implementation if no template

is provided.

The following code is placed in a ClassLibrary project called MyControlLibrary,

which defines a templated control class called ProductControl. This control contains

properties called ProductId, ProductName, QtyPerUnit, and UnitPrice. The values can

be assigned at design time or at run time. The ProductControl class also contains a

ProductTemplate property that allows the page designer to assign a template.

'VB

Imports System.Web.UI

<ParseChildren(True)> _

Public Class ProductControl

Inherits Control

Implements INamingContainer

Lesson 2: Working with Custom Web Server Controls

Public Property ProductId() As Integer

 Get

 Return _productId

 End Get

 Set(ByVal value As Integer)

 _productId = value

 End Set

End Property

Private _productId As Integer

Public Property ProductName() As String

 Get

 Return _productName

 End Get

 Set(ByVal value As String)

 _productName = value

 End Set

End Property

Private _productName As String

Public Property QtyPerUnit() As String

 Get

 Return _qtyPerUnit

 End Get

 Set(ByVal value As String)

 _qtyPerUnit = value

 End Set

End Property

Private _qtyPerUnit As String

Public Property UnitPrice() As Decimal

 Get

 Return _unitPrice

 End Get

 Set(ByVal value As Decimal)

 _unitPrice = value

 End Set

End Property

Private _unitPrice As Decimal

<PersistenceMode(PersistenceMode.InnerProperty)> _

<TemplateContainer(GetType(ProductContainer))> _

Public Property ProductTemplate() As ITemplate

 Get

 Return _productTemplate

 End Get

 Set(ByVal value As ITemplate)

 _productTemplate = value

 End Set

End Property

Private _productTemplate As ITemplate

441

442

Chapter 5 Creating Custom Web Controls

Public Overrides Sub DataBind()

 EnsureChildControls()

 MyBase.DataBind()

End Sub

Protected Overrides Sub CreateChildControls()

 Controls.Clear()

 ' If there is a template, use it to create children.

 ' else just show the message.

 If Not (ProductTemplate Is Nothing) Then

 Dim p As New ProductContainer(_

 ProductId, ProductName, QtyPerUnit, UnitPrice)

 ProductTemplate.InstantiateIn(p)

 Controls.Add(p)

 Else

 Me.Controls.Add(New LiteralControl(_

"No VB ProductTemplate Defined"))

 End If

End Sub

End Class

//C#

using System;

using System.Web;

using System.Web.UI;

namespace MyControlLibrary

{

[ParseChildren(true)]

public class ProductControl : Control, INamingContainer

{

 public int ProductId

{

 get { return _productId; }

 set { _productId = value; }

}

 private int _productId;

 public String ProductName

{

 get { return _productName; }

 set { _productName = value; }

}

 private String _productName;

 public String QtyPerUnit

{

 get { return _qtyPerUnit; }

 set { _qtyPerUnit = value; }

}

 private String _qtyPerUnit;

 public decimal UnitPrice

{

Lesson 2: Working with Custom Web Server Controls

443

}

 get { return _unitPrice; }

 set { _unitPrice = value; }

 private decimal _unitPrice;

 [PersistenceMode(PersistenceMode.InnerProperty)]

 [TemplateContainer(typeof(ProductContainer))]

 public ITemplate ProductTemplate

{

 get { return _productTemplate; }

 set { _productTemplate = value; }

}

 private ITemplate _productTemplate;

 public override void DataBind()

{

 EnsureChildControls();

 base.DataBind();

}

 protected override void CreateChildControls()

{

 Controls.Clear();

 // If there is a template, use it to create children.

 // else just show the message.

 if (ProductTemplate != null)

{

ProductContainer p = new ProductContainer(

 ProductId, ProductName, QtyPerUnit, UnitPrice);

ProductTemplate.InstantiateIn(p);

Controls.Add(p);

}

 else

{

this.Controls.Add(new LiteralControl(

 "No ProductTemplate Defined"));

}

}

}//end class

}//end ns

Notice that the ProductControl creates a ProductContainer in the CreateChildControls

method. This is the container class that exposes the data that is available to the tem

plate via the Container object. The code for the ProductContainer class is as follows:

'VB

Imports System.Web.UI

444

Chapter 5 Creating Custom Web Controls

Public Class ProductContainer

Inherits Control

Implements INamingContainer

Public Sub New()

End Sub

Public Sub New(ByVal _productId As Integer, ByVal _productName As String, _

ByVal _qtyPerUnit As String, ByVal _unitPrice As Decimal)

 ProductId = _productId : ProductName = _productName

 QtyPerUnit = _qtyPerUnit : UnitPrice = _unitPrice

End Sub

Public Property ProductId() As Integer

 Get

 Return _productId

 End Get

 Set(ByVal value As Integer)

 _productId = value

 End Set

End Property

Private _productId As Integer

Public Property ProductName() As String

 Get

 Return _productName

 End Get

 Set(ByVal value As String)

 _productName = value

 End Set

End Property

Private _productName As String

Public Property QtyPerUnit() As String

 Get

 Return _qtyPerUnit

 End Get

 Set(ByVal value As String)

 _qtyPerUnit = value

 End Set

End Property

Private _qtyPerUnit As String

Public Property UnitPrice() As Decimal

 Get

 Return _unitPrice

 End Get

 Set(ByVal value As Decimal)

 _unitPrice = value

 End Set

End Property

Private _unitPrice As Decimal

End Class

//C#

using System;

using System.Web;

using System.Web.UI;

namespace MyControlLibrary

{

Lesson 2: Working with Custom Web Server Controls

445

public class ProductContainer : Control, INamingContainer

{

 public ProductContainer() { }

 public ProductContainer(int productId, string productName,

 string qtyPerUnit, decimal unitPrice)

{

 ProductId = productId; ProductName = productName;

 QtyPerUnit = qtyPerUnit; UnitPrice = unitPrice;

}

 public int ProductId

{

 get { return _productId; }

 set { _productId = value; }

}

 private int _productId;

 public String ProductName

{

 get { return _productName; }

 set { _productName = value; }

}

 private String _productName;

 public String QtyPerUnit

{

 get { return _qtyPerUnit; }

 set { _qtyPerUnit = value; }

}

 private String _qtyPerUnit;

 public decimal UnitPrice

{

 get { return _unitPrice; }

 set { _unitPrice = value; }

}

 private decimal _unitPrice;

}//end class

}//end ns

446

Chapter 5 Creating Custom Web Controls

Using the Templated Control

This class library project is compiled to a .dll, and the ProductControl can be added to

the ToolBox by right-clicking the ToolBox and selecting the Choose Items option.

Simply browse to and select the .dll file to add the ProductControl to your ToolBox.

In the following code example, a Web page is created called ProductControlTest.aspx

and a ProductControl is added. After the ProductControl is added, the product’s prop

erties are set, and the ProductTemplate is defined in the HTML source of the page.

APSX File
'VB

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ProductControlTest.aspx.vb"

Inherits="ProductControlTest" %>

<%@ Register Assembly="MyControlLibrary" Namespace="MyControlLibrary" TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"Error! Hyperlink reference not valid.

DTD/xhtml1-transitional.dtd">

<script runat="Server">

Public Sub Page_Load()

 DataBind()

End Sub

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <cc1:ProductControl ID="ProductControl1"

 runat="server" ProductId="925" ProductName="MyProduct"

 QtyPerUnit="12 per carton" UnitPrice="123.45">

 <ProductTemplate>

<h1>Product ID: <%# Container.ProductId %></h1>

<table border="1">

 <tr>

 <td>Name:</td>

 <td><%# Container.ProductName %></td>

 </tr>

 <tr>

 <td>Qty per Unit:</td>

 <td><%# Container.QtyPerUnit %></td>

 </tr>

 <tr>

 <td>Unit Price:</td>

Lesson 2: Working with Custom Web Server Controls

 <td align="right">

 <%# Container.UnitPrice.ToString("C") %>

 </td>

 </tr>

</table>

 </ProductTemplate>

 </cc1:ProductControl>

 </div>

 </form>

</body>

</html>

//C#

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="ProductControlTest.aspx.cs"

Inherits="ProductControlTest" %>

<%@ Register Assembly="MyControlLibrary" Namespace="MyControlLibrary" TagPrefix="cc1" %>

447

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"Error! Hyperlink reference not valid.

DTD/xhtml1-transitional.dtd">

<script runat="server">

public void Page_Load()

{

 DataBind();

}

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <cc1:ProductControl ID="ProductControl1"

 runat="server" ProductId="925" ProductName="MyProduct"

 QtyPerUnit="12 per carton" UnitPrice="123.45">

 <ProductTemplate>

<h1>Product ID: <%#Container.ProductId %></h1>

<table border="1">

 <tr>

 <td>Name:</td>

 <td><%#Container.ProductName %></td>

 </tr>

 <tr>

 <td>Qty per Unit:</td>

 <td><%#Container.QtyPerUnit %></td>

 </tr>

 <tr>

 <td>Unit Price:</td>

 <td align="right">

 <%#Container.UnitPrice.ToString("C") %>

448

Chapter 5 Creating Custom Web Controls

 </td>

 </tr>

</table>

 </ProductTemplate>

 </cc1:ProductControl>

 </div>

 </form>

</body>

</html>

Notice that the top of the .aspx file contains a script with the DataBind call, which

forces the rendering of the ProductControl with the product data. When the page is

run, the product data is displayed using the ProductTemplate that was defined in the

HTML source, as shown in Figure 5-11.

Figure 5-11 The rendered templated control shows the product data formatted using the Product-

Template.

Quick Check

■ You want to create a control that can be distributed as a .dll. The control

contains several TextBox, Label, and Button controls and you want to be

able to add the control to the ToolBox. What is the best choice of control

to create?

Quick Check Answer

■ Create a composite control.

Lesson 2: Working with Custom Web Server Controls

Lab: Working With Custom Web Server Controls

449

In this lab, you create a custom Web server control called StateControl that displays a

list of the states. This control is compiled into a .dll file and added to the ToolBox so

it is available to all of your projects.

� Exercise 1: Create the Class Library Project and the Control

In this exercise, you create the CustomControls class library project. You also add the

StateControl class to the project and add code to populate the Items collection with the

list of states.

1. Open Visual Studio 2005; create a new class library project called CustomControls

using your preferred programming language.

2. The new project creates a class called Class1. Delete this class.

3. Add a new class called StateControl to your project.

4. Add a reference to the System.Web.dll and the System.Drawing.dll assemblies.

5. Add the following statements to import namespaces into your project:

'VB

Imports System.Web.UI.WebControls

Imports System.Drawing

//C#

using System.Web.UI.WebControls;

using System.Drawing;

6. Add the StateControl.bmp file to the project and set its Build Action to Embed

ded Resource. This is a 16-by-6-pixel bitmap file showing the U.S. flag.

7. Add the ToolboxBitmap attribute above the StateControl to assign the StateCon

trol.bmp file as the icon for the StateControl class.

8. In the constructor of the StateControl, add code to create an empty ListItem and

a ListItem for each state, and add the ListItems to the Items collection of the State-

Control. The ListItem for each state displays the full name of the state, but the

posted value is the two-character state abbreviation. Your completed StateControl

class should look like the following:

'VB

Imports System.Web.UI.WebControls

Imports System.Drawing

<ToolboxBitmap(GetType(StateControl), "StateControl.bmp")> _

450

Chapter 5 Creating Custom Web Controls

Public Class StateControl

Inherits DropDownList

Public Sub New()

 Items.Add(New ListItem("", ""))

 Items.Add(New ListItem("Alabama", "AL"))

 Items.Add(New ListItem("Alaska", "AK"))

 Items.Add(New ListItem("Arizona", "AZ"))

 Items.Add(New ListItem("Arkansas", "AR"))

 Items.Add(New ListItem("California", "CA"))

 Items.Add(New ListItem("Colorado", "CO"))

 Items.Add(New ListItem("Connecticut", "CT"))

 Items.Add(New ListItem("Delaware", "DE"))

 Items.Add(New ListItem("District of Columbia", "DC"))

 Items.Add(New ListItem("Florida", "FL"))

 Items.Add(New ListItem("Georgia", "GA"))

 Items.Add(New ListItem("Hawaii", "HI"))

 Items.Add(New ListItem("Idaho", "ID"))

 Items.Add(New ListItem("Illinois", "IL"))

 Items.Add(New ListItem("Indiana", "IN"))

 Items.Add(New ListItem("Iowa", "IA"))

 Items.Add(New ListItem("Kansas", "KS"))

 Items.Add(New ListItem("Kentucky", "KY"))

 Items.Add(New ListItem("Louisiana", "LA"))

 Items.Add(New ListItem("Maine", "ME"))

 Items.Add(New ListItem("Maryland", "MD"))

 Items.Add(New ListItem("Massachusetts", "MA"))

 Items.Add(New ListItem("Michigan", "MI"))

 Items.Add(New ListItem("Minnesota", "MN"))

 Items.Add(New ListItem("Mississippi", "MS"))

 Items.Add(New ListItem("Missouri", "MO"))

 Items.Add(New ListItem("Montana", "MT"))

 Items.Add(New ListItem("Nebraska", "NE"))

 Items.Add(New ListItem("Nevada", "NV"))

 Items.Add(New ListItem("New Hampshire", "NH"))

 Items.Add(New ListItem("New Jersey", "NJ"))

 Items.Add(New ListItem("New Mexico", "NM"))

 Items.Add(New ListItem("New York", "NY"))

 Items.Add(New ListItem("North Carolina", "NC"))

 Items.Add(New ListItem("North Dakota", "ND"))

 Items.Add(New ListItem("Ohio", "OH"))

 Items.Add(New ListItem("Oklahoma", "OK"))

 Items.Add(New ListItem("Oregon", "OR"))

 Items.Add(New ListItem("Pennsylvania", "PA"))

 Items.Add(New ListItem("Rhode Island", "RI"))

 Items.Add(New ListItem("South Carolina", "SC"))

 Items.Add(New ListItem("South Dakota", "SD"))

 Items.Add(New ListItem("Tennessee", "TN"))

 Items.Add(New ListItem("Texas", "TX"))

 Items.Add(New ListItem("Utah", "UT"))

 Items.Add(New ListItem("Vermont", "VT"))

 Items.Add(New ListItem("Virginia", "VA"))

 Items.Add(New ListItem("Washington", "WA"))

Lesson 2: Working with Custom Web Server Controls

 Items.Add(New ListItem("West Virginia", "WV"))

 Items.Add(New ListItem("Wisconsin", "WI"))

 Items.Add(New ListItem("Wyoming", "WY"))

 SelectedIndex = 0

End Sub

End Class

//C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Drawing;

namespace CustomControls

{

[ToolboxBitmap(typeof(StateControl),"StateControl.bmp")]

class StateControl : DropDownList

{

 public StateControl()

{

 Items.Add(new ListItem("", ""));

 Items.Add(new ListItem("Alabama", "AL"));

 Items.Add(new ListItem("Alaska", "AK"));

 Items.Add(new ListItem("Arizona", "AZ"));

 Items.Add(new ListItem("Arkansas", "AR"));

 Items.Add(new ListItem("California", "CA"));

 Items.Add(new ListItem("Colorado", "CO"));

 Items.Add(new ListItem("Connecticut", "CT"));

 Items.Add(new ListItem("Delaware", "DE"));

 Items.Add(new ListItem("District of Columbia", "DC"));

 Items.Add(new ListItem("Florida", "FL"));

 Items.Add(new ListItem("Georgia", "GA"));

 Items.Add(new ListItem("Hawaii", "HI"));

 Items.Add(new ListItem("Idaho", "ID"));

 Items.Add(new ListItem("Illinois", "IL"));

 Items.Add(new ListItem("Indiana", "IN"));

 Items.Add(new ListItem("Iowa", "IA"));

 Items.Add(new ListItem("Kansas", "KS"));

 Items.Add(new ListItem("Kentucky", "KY"));

 Items.Add(new ListItem("Louisiana", "LA"));

 Items.Add(new ListItem("Maine", "ME"));

 Items.Add(new ListItem("Maryland", "MD"));

 Items.Add(new ListItem("Massachusetts", "MA"));

 Items.Add(new ListItem("Michigan", "MI"));

 Items.Add(new ListItem("Minnesota", "MN"));

 Items.Add(new ListItem("Mississippi", "MS"));

 Items.Add(new ListItem("Missouri", "MO"));

 Items.Add(new ListItem("Montana", "MT"));

 Items.Add(new ListItem("Nebraska", "NE"));

 Items.Add(new ListItem("Nevada", "NV"));

 Items.Add(new ListItem("New Hampshire", "NH"));

 Items.Add(new ListItem("New Jersey", "NJ"));

451

452

Chapter 5 Creating Custom Web Controls

 Items.Add(new ListItem("New Mexico", "NM"));

 Items.Add(new ListItem("New York", "NY"));

 Items.Add(new ListItem("North Carolina", "NC"));

 Items.Add(new ListItem("North Dakota", "ND"));

 Items.Add(new ListItem("Ohio", "OH"));

 Items.Add(new ListItem("Oklahoma", "OK"));

 Items.Add(new ListItem("Oregon", "OR"));

 Items.Add(new ListItem("Pennsylvania", "PA"));

 Items.Add(new ListItem("Rhode Island", "RI"));

 Items.Add(new ListItem("South Carolina", "SC"));

 Items.Add(new ListItem("South Dakota", "SD"));

 Items.Add(new ListItem("Tennessee", "TN"));

 Items.Add(new ListItem("Texas", "TX"));

 Items.Add(new ListItem("Utah", "UT"));

 Items.Add(new ListItem("Vermont", "VT"));

 Items.Add(new ListItem("Virginia", "VA"));

 Items.Add(new ListItem("Washington", "WA"));

 Items.Add(new ListItem("West Virginia", "WV"));

 Items.Add(new ListItem("Wisconsin", "WI"));

 Items.Add(new ListItem("Wyoming", "WY"));

 SelectedIndex = 0;

}

}

}

9. Build the CustomControls project.

� Exercise 2: Create the Class Library Project and the Control

In this exercise, you create a Web site to test your StateControl.

1. Open Visual Studio 2005 and create a new ASP.NET Web site called Working-

WithCustomWebServerControls using your preferred programming language.

The new Web site is created and a Web page called Default.aspx is displayed.

2. Add the StateControl to the Toolbox by right-clicking the Toolbox and selecting

Choose Items. Click the Browse button and locate the CustomControls.dll assem

bly. Select the CustomControls.dll assembly, and the StateControl is displayed in

the Toolbox.

3. Drag the StateControl, and drop it onto the Default.aspx Web page.

4. Set the Style property of the StateControl to set the location of the StateControl, as

shown in the following code sample:

'VB

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" %>

<%@ Register Assembly="CustomControls"

 Namespace="CustomControls" TagPrefix="cc1" %>

Lesson 2: Working with Custom Web Server Controls

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <cc1:StateControl ID="StateControl1" runat="server"

 Style="z-index: 100; left: 80px; position: absolute; top: 30px">

 </cc1:StateControl>

 </div>

 </form>

</body>

</html>

//C#

<%@ Page Language="VB" AutoEventWireup="false"

 CodeFile="Default.aspx.vb" Inherits="_Default" %>

<%@ Register Assembly="CustomControls"

 Namespace="CustomControls" TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <cc1:StateControl ID="StateControl1" runat="server"

 Style="z-index: 100; left: 80px; position: absolute; top: 30px">

 </cc1:StateControl>

 </div>

 </form>

</body>

</html>

453

5. Test the Web page by pressing F5 to display the page. You should see the State-

Control in the location that was set with the Style property. The drop-down list

box contains the list of states shown in Figure 5-12.

454

Chapter 5 Creating Custom Web Controls

Figure 5-12 The StateControl with its drop down list of states.

Chapter 6

Input Validation and Site
Navigation

The previous chapters covered many Web server control and custom Web server con

trols. Those topics relate to building a Web page, and this chapter continues the Web

page building process by covering input validation, which should be a mandatory

requirement for all data that is collected from the user.

After the user input is validated and processed, you may want to navigate to a different

Web page. This chapter covers the various means of navigating a Web site.

Exam objectives in this chapter:

■ Program a Web application.

❑ Redirect users to another page by using a server-side method.

❑ Implement cross-page postbacks.

❑ Assign focus to a control on a page when the page is displayed.

❑ Avoid unnecessary client-side redirection by using the HttpServerUtility

.Transfer method.

❑ Avoid round trips by using client-side scripts.

■ Implement site navigation and input validation.

❑ Use the SiteMap Web server control to display a representation of a Web

site’s navigation structure.

❑ Use validation controls to perform Web Forms validation.

❑ Validate against values in a database for server controls by using a Custom-

Validator control.

❑ Create a CustomValidator control and tie it to a custom function.

❑ Test programmatically whether a user’s input passes validation before run

ning code.

❑ Specify the location of a validation error message for server controls.

❑ Format validation error messages for server controls.

461

462

Chapter 6 Input Validation and Site Navigation

❑ Specify the layout for in-place messages on server controls.

❑ Disable validation for server controls.

❑ Display custom error messages for server controls.

❑ Validate server controls programmatically.

■ Add and configure Web server controls.

❑ Create and manipulate links on a Web Form by using the HyperLink Web

server control.

❑ Implement pagination for controls on a page by using the Pager Web server

control.

Lessons in this chapter:

■ Lesson 1: Performing Input Validation . 464

■ Lesson 2: Performing Site Navigation . 481

Before You Begin
To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed with

Microsoft SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

■ Know how to create a new Web site.

■ Be able to add Web server controls to a Web page.

Real World

Glenn Johnson

Before You Begin

463

Recently, I was searching the Web for information on a couple of personal water

crafts. I performed my search and found three dealers that were nearby. I went to

the first site; on their ―Contact Us‖ page, I entered my e-mail address and the fol

lowing message:

―Hi, I’m looking for two personal watercraft with a trailer. Please contact me.‖

I submitted my message and received a message stating that someone would get

back to me.

I went to the second site and did the same thing. This time, when I submitted my

message, I received a SQL syntax error. The problem is that my message has an

apostrophe (single quote) in it. I changed my message to ―…I am looking…‖ and

re-submitted the message. The response was that someone would get back to

me, so I decided that I would let them know about the problem when a salesper

son contacted me. No one ever contacted me. This site probably still has this vul

nerability.

You may be wondering what the big deal is. The problem is that this error is a

blatant indicator that this Web site has a SQL injection vulnerability because the

apostrophe is the string delimiter in a SQL statement. If an error is generated

when the apostrophe is entered, it means that the developer did not take the

necessary steps to escape the apostrophe. This means that the apostrophe that

was entered by the user terminated the SQL string and SQL Server didn’t know

what to do with the characters that follow, so SQL Server threw a syntax error. A

dishonest person could take advantage of this vulnerability to cause damage to

the Web site or even to steal data from the Web site. Remember that it’s impor

tant to perform input validation to ensure proper user input.

464

Chapter 6 Input Validation and Site Navigation

Lesson 1: Performing Input Validation

In this lesson, you will learn how the validation framework operates and how you

can use the validation controls that are included in ASP.NET 2.0 to perform input

validation.

After this lesson, you will be able to:

■ Understand the validation framework.

■ Add validation controls to a Web page.

■ Configure validation controls.

■ Implement the CustomValidator control.

■ Test for valid user input.

Estimated lesson time: 60 minutes

Understanding the Validation Framework

We are often faced with the challenge of ensuring that the user has input the neces

sary data into all required fields and ensuring that the data is valid. The data-valida

tion framework provides a simple way to accomplish this task with minimum coding.

The validation controls that are built into ASP.NET 2.0 provide both client-side and

server-side validation.

Client-side validation is a convenience to the user because it improves performance by

checking the data at the browser before sending the data to the server. This avoids

unnecessary round trips to the server, but client-side validation can be easily defeated

by hackers.

Server-side validation provides a more secure means of validating the data that is

posted back to the server. Using both client-side and server-side validation provides a

better experience to the user and secure validation for the Web site.

To perform validation, the developer can simply attach one or more validator controls

to each control that accepts user input. ASP.NET 2.0 provides several validation con

trols that automatically provide server-side and client-side validation. Figure 6-1

shows the validation control hierarchy.

BaseValidator

Abstract Class

Label

Lesson 1: Performing Input Validation

IValidator

465

CustomValidator

Class

BaseValidator

RegularExpressionValidator

Class

BaseValidator

RequiredFieldValidator

Class

BaseValidator

BaseCompareValidator

Abstract Class

BaseValidator

CompareValidator

Class

 BaseCompareValidator

RangeValidator

Class

BaseCompareValidator

Figure 6-1 The validation control hierarchy.

You typically add a validation control to a Web page using the following steps:

1. Drag and drop the desired validator next to the control that is to be validated.

2. Name the validator control.

3. Set the ControlToValidate property to attach the validator to the control that will

be validated.

4. Set the ErrorMessage property to a descriptive error message that the user will

understand.

5. Copy the ErrorMessage property and paste it into the ToolTip property to display

the error when the user hovers the pointer over the validator.

6. Set the Text property of the validator to a very short string, usually an asterisk

(*), to minimize the space that is required by the validator when the control is

not valid.

The validation framework contains the ValidationSummary control, which can be placed

on the Web page to display all the validation error messages in one location. This is use

ful in scenarios where the Web page is crowded with other controls and displaying the

validation error next to the invalid control is difficult. The ValidationSummary control

can also be configured to display a pop-up message with the validation errors in lieu of,

466

Chapter 6 Input Validation and Site Navigation

or in addition to, displaying the validation errors on the Web page.

The Page object has a Validators property that contains a collection of all validation

controls. The Web page also has a Validate method that you can call to check all of the

validator controls in the page. By default, the Validate method is called automatically,

but this call takes place after the Load event handler method executes. The Web page

has a property called IsValid that is set after the Validate method is executed. Although

the IsValid property is set automatically for you, you need to check the IsValid property

in every event handler to determine whether the code that you should run is based on

the IsValid state.

NOTE New in ASP.NET 2.0

The Focus and SetFocusOnError methods are new in ASP.NET 2.0.

The Control class has a method called Focus that can be called to set the focus to a spe

cific control when the page is loaded. This method adds client-side JavaScript code

that executes at the browser to set focus to the appropriate control. In addition to the

new Focus method, a validation control has a similar method called SetFocusOnError

that can be set to true to cause the invalid control to automatically receive focus.

Understanding the BaseValidator Class

The validation controls inherit from the BaseValidator abstract class. This class con

tains most of the validation functionality. Table 6-1 contains a list of the properties

that the BaseValidator provides.

Table 6-1 BaseValidator Properties

BaseValidator Property

ControlToValidate

Display

Description

Set this to the control that is to be validated.

Set this to display the behavior of the validation mes

sage; it can be set to None (doesn’t display the valida

tion message), Static (displays the validation message

and consumes the same space on the Web page even

when the message does not display), or Dynamic (dis

plays the validation message, but takes up no space if

no message needs to be displayed).

Table 6-1 BaseValidator Properties

BaseValidator Property Description

Lesson 1: Performing Input Validation

467

EnableClientSideScript

ErrorMessage

IsValid

Set to false to disable client-side validation. Default is

true.

Set to the text that displays when validation fails. If the

Text property is set, the validation control displays the

contents of the Text property, while the ValidationSum

mary control displays the ErrorMessage contents.

The valid status of a control.

Set the Enabled property to false to completely disable the control. If a validation con

trol is to supply information to the ValidationSummary control and not display its own

information beside the invalid control, set the Display property of the control to None.

Understanding the RequiredFieldValidator Control

The RequiredFieldValidator is used to ensure that the user has placed non–white space

data into a control. The other controls do not attempt to validate an empty field, so

you frequently need to use the RequiredFieldValidator with one of the other controls to

achieve the desired validation.

The RequiredFieldValidator provides an additional property called InitialValue that is

used when the control that you are validating defaults to a value and you want to

ensure that the user changes this value. For example, if you normally display a zero

(0) value in a control for the age and you want to ensure that the user changes the age,

set the InitialValue to zero so a validation error occurs if the user leaves the default

value of the control set to zero.

Understanding the BaseCompareValidator Class

The RangeValidator and CompareValidator inherit from the BaseCompareValidator con

trol, which contains common comparison behavior that is used by these controls.

The BaseCompareValidator contains the Type property, which you can set to the data

type that the text is converted to before a comparison is made. The data types that are

available are as follows:

■ Currency The data is validated as System.Decimal, but currency symbols and

grouping characters also can be entered.

468

Chapter 6 Input Validation and Site Navigation

■ Date The data is validated as a numeric date.

■ Double The data is validated as System.Double.

■ Integer The data is validated as System.Int32.

■ String The data is validated as System.String.

Using the CompareValidator Control

The CompareValidator control performs its validation by using comparison operators

such as greater than and less than to compare the data with a constant or a value in a

different control. In addition, the CompareValidator can verify that the data is of a cer

tain type, such as a date.

The ValueToCompare property can be set to a constant that is used to perform the com

parison.

The Operator property defines how to perform the comparison and can be set to Equal,

NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, or DataTypeCheck.

The ControlToCompare property can be set to a control that is used to perform the

comparison. This property takes precedence if this property and the ValueToCompare

properties are both set.

Using the RangeValidator Control

The RangeValidator control is used to verify that the data to be validated is within a

specified range of values. To use this control effectively, you must set the Minimum-

Value, MaximumValue, and the Type properties.

The Type property causes the data to be converted to the proper data type prior to

checking the range. The Type property defaults to String, so you must set the Type

property to achieve proper range validation. For example, if you don’t set the Type

property, it defaults to String, and if a numeric range is being checked from 3 to 30,

only strings that begin with the string letter 3 are considered valid.

Using the RegularExpressionValidator Control

The RegularExpressionValidator control performs its validation based on a regular

expression. A regular expression is a powerful pattern-matching language that can be

used to identify simple and complex character sequences that would otherwise

Lesson 1: Performing Input Validation

469

require writing code to accomplish. This ValidationExpression property is set to a valid

regular expression that is applied to the data that is to be validated. The data is vali

dated if it matches the regular expression.

MORE INFO Regular Expressions

For more information about regular expressions such as tutorials and sample regular expressions,

refer to the following URLs:

http://www.regexlib.com/

http://www.regular-expressions.info/

The CustomValidator Control

The CustomValidator control performs its validation based on custom validation code

that you provide. You can write the client-side validation code using JavaScript or

server-side validation code using your preferred .NET language.

The client-side validation code must contain a JavaScript function that has the follow

ing method signature:

function ClientFunctionName(source, arguments)

The source parameter contains a reference to the validation control that is performing

the validation. The arguments parameter is an object that has a property called Value

that contains the data to be validated and an IsValid property that you set to false if the

data does not validate or true if the data does validate.

To attach your client-side code to the CustomValidator, set the ClientFunctionName

property to the name of your validation function.

In the following code example, a Web page contains a TextBox called txtPassword, an

associated CustomValidator called cusCheckPassword, and a RequiredFieldValidator called

reqPassword because the custom script will not execute if a password is not entered. A

valid password must be between 6 and 14 characters and must contain at least one

uppercase letter, one lowercase letter, and one numeric character. A ValidationSummary

has also been added to the bottom of the Web page to show the validation error.

JavaScript Client-Side Validation
<script language="javascript" type="text/javascript">

 function ValidatePassword(source, arguements)

{

 var data = arguements.Value.split('');

http://www.regexlib.com/
http://www.regular-expressions.info/
http://www.regular-expressions.info/

470

Chapter 6 Input Validation and Site Navigation

 //start by setting false

 arguements.IsValid=false;

 //check length

 if(data.length < 6 || data.length > 14) return;

 //check for uppercase

 var uc = false;

 for(var c in data)

{

if(data[c] >= 'A' && data[c] <= 'Z')

{

 uc=true; break;

}

}

 if(!uc) return;

 //check for lowercase

 var lc = false;

 for(var c in data)

{

if(data[c] >= 'a' && data[c] <= 'z')

{

 lc=true; break;

}

}

 if(!lc) return;

 //check for numeric

 var num = false;

 for(var c in data)

{

if(data[c] >= '0' && data[c] <= '9')

{

 num=true; break;

}

}

 if(!num) return;

 //must be valid

 arguements.IsValid=true;

}

</script>

The Web page is run and lowercase letters are entered into the txtPassword control.

When the txtPassword control loses focus, the client-side validation is executed, as

shown in Figure 6-2.

Lesson 1: Performing Input Validation

471

Figure 6-2 The client-side validation causes the ValidationSummary control to display the error.

The CustomValidator has an event called ServerValidate that is a server-side event. The

following is an example of using the ServerValidate event to perform server-side vali

dation:

ServerValidate Handler
'VB

Protected Sub cusCheckPassword_ServerValidate(ByVal source As Object, _

ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _

Handles cusCheckPassword.ServerValidate

 Dim data As String = args.Value

 'start by setting false

 args.IsValid = False

 'check length

 If (data.Length < 6 Or data.Length > 14) Then Return

 'check for uppercase

 Dim uc As Boolean = False

 For Each c As Char In data

If (c >= "A" And c <= "Z") Then

uc = True : Exit For

End If

Next

 If Not uc Then Return

 'check for lowercase

 Dim lc As Boolean = False

 For Each c As Char In data

If (c >= "a" And c <= "z") Then

472

Chapter 6 Input Validation and Site Navigation

lc = True : Exit For

End If

Next

 If Not lc Then Return

 'check for numeric

 Dim num As Boolean = False

 For Each c As Char In data

If (c >= "0" And c <= "9") Then

num = True : Exit For

End If

Next

 If Not num Then Return

 'must be valid

 args.IsValid = True

End Sub

//C#

protected void cusCheckPassword_ServerValidate(object source,

 ServerValidateEventArgs args)

{

 string data = args.Value;

 //start by setting false

 args.IsValid = false;

 //check length

 if (data.Length < 6 || data.Length > 14) return;

 //check for uppercase

 bool uc = false;

 foreach (char c in data)

{

if (c >= 'A' && c <= 'Z')

{

uc = true; break;

}

}

 if (!uc) return;

 //check for lowercase

 bool lc = false;

 foreach (char c in data)

{

if (c >= 'a' && c <= 'z')

{

lc = true; break;

}

}

 if (!lc) return;

 //check for numeric

 bool num = false;

}

 foreach (char c in data)

{

if (c >= '0' && c <= '9')

{

num = true; break;

}

}

 if (!num) return;

 //must be valid

 args.IsValid = true;

Lesson 1: Performing Input Validation

473

Like client-side validation, server-side validation also provides access to the source

validator and the Value to be validated, and the IsValid property can be set to false to

indicate validation failure.

Note that, when using the CustomValidator, the server-side validation does need to

provide the same validation at the client-side validation. For example, the custom cli

ent-side script for a CustomValidator that validates a five-character customer ID might

simply test to ensure that five characters are provided within the acceptable range

(uppercase, lowercase). The server-side validation may perform a database query to

ensure that the customer ID is that of a valid customer in the database.

Ensuring Server-Side Validation

To test server-side validation, disable all client-side validation by setting the EnableCli

entScript property of the validation controls to false.

Server-side validation occurs after the Load event handler method is executed, at

which time the runtime calls the Validate method on the Web page. You need to place

code into your event handler methods to test the IsValid property, as shown in the fol

lowing example:

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

 If Not IsValid Then Return

 'use page data

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

 if (!IsValid) return;

 //use page data

}

474

Chapter 6 Input Validation and Site Navigation

Determining When to Validate

Although client-side validation is considered to be a convenience for the normal user

and is certainly not secure, the primary benefit of client-side validation is that the page

is not posted until all client-side validation has successfully occurred. This can be a

problem when the user wants to press a cancel or help button and the page is not

valid. The problem is that the default behavior of the button is to attempt PostBack to

the server, but if the page is not valid, clicking the button won’t cause PostBack to the

server.

Controls that should be able to bypass validation can do so by setting their CausesVal

idation property to false. This property defaults to true.

Using Validation Groups

In earlier versions of ASP.NET, all of the validation controls were checked when a Post-

Back occurred. You could set the CausesValidation property to false on the control that

caused the PostBack to occur, but you often wanted more control than that for scenar

ios where a Web page contained several sections and you only wanted a particular sec

tion to be validated.

NOTE New in ASP.NET 2.0

Validation groups are new in ASP.NET 2.0.

In ASP.NET 2.0, there is a new property called the ValidationGroup that can be

assigned a string to specify a section. This property exists on the validation controls

and on the controls that cause PostBacks to occur. When a control performs a PostBack,

the validator controls that have a matching ValidationGroup property are validated.

On PostBack, the IsValid property on the Page object only reflects the validity of the val

idation controls that have been validated. By default, these are the validation controls

that are in the same ValidationGroup, but you can call a validation control’s Validate

method to add that control to the set of controls that the IsValid reports on.

With the addition of the ValidationGroup property is a new overload to the Page

object’s Validate method that accepts a string to specify the ValidationGroup to authen

ticate. This overload is executed when a PostBack that causes validation occurs.

http://ASP.NET

Lesson 1: Performing Input Validation

475

The Page object has a GetValidators method that accepts a string containing the name

of the ValidationGroup. This method returns the list of validators in the Validation-

Group.

Quick Check

1. Which validator control can be used to determine if data that is entered

into a TextBox control is Currency?

2. What control can be used to display all validation errors in a pop-up win

dow?

Quick Check Answers

1. The CompareValidator control.

2. The ValidationSummary control.

Lab: Working with Validation Controls

In this lab, you create a registration page that contains TextBox controls for the user

name, password, confirm password, and Zip Code fields. All fields are required. The

user name must be between 6 and 14 characters that can be uppercase, lowercase,

numeric, or underscores. The password and confirm password will be 6 to 14 charac

ters that must contain at least one uppercase letter, one lowercase letter, and one num

ber, as described in the custom validator example. The Zip Code must be a valid U.S.

Zip Code, which can be in the format 99999 or 99999-9999.

� Exercise 1: Create the Web Site and add Controls

In this exercise, you create the Web site and add the controls.

1. Open Visual Studio 2005 and create a new Web site called WorkingWithVali

dationControls using your preferred programming language. The new Web site

is created, and a Web page called Default.aspx is displayed.

2. Add an HTML table to the Default.aspx Web page. This table will have four rows

and two columns.

3. Add the descriptions in the first column of each of the four rows. The descrip

tions are User Name, Password, Confirm Password, and Zip Code.

4. Add a TextBox control into the second column of the four rows. Name the Text-

Box controls txtUser, txtPassword, txtConfirm, and txtZip.

476

Chapter 6 Input Validation and Site Navigation

5. Set the TextMode property to txtPassword and txtConfirm to Password.

6. Add a Button control under the table. Set the Text of the Button control to Submit.

Figure 6-3 shows the Web page.

Figure 6-3 The registration page prior to adding validation.

� Exercise 2: Add the Validation Controls

In this exercise, you add and configure the validation controls.

1. Continue with the project from the previous exercise, or open the completed

Lesson 1, Exercise 1 project from the CD.

2. All of the TextBox controls require user input, so add the RequiredFieldValidator

next to each TextBox control.

3. For each of the RequiredFieldValidator controls, set the ControlToValidate prop

erty to the TextBox that is being validated.

4. For each of the RequiredFieldValidator controls, set the ErrorMessage property to

User name is required., Password is required., Confirm password is

required., and Zip code is required., respectively.

5. Add a RegularExpression control next to the txtUser control and set the Control-

ToValidate property to txtUser. Set the ErrorMessage to Must be 6-14 of A-Z, a-z,

0-9, or _. Set the ValidationExpression to \w{6,14}.

6. Add a CustomValidator next to the txtPassword control. Set the ControlToValidate

property to txtPassword. Set the ErrorMessage to Must be 6-14 characters, at

Lesson 1: Performing Input Validation

least 1 upper, 1 lower, and 1 number.

477

7. Set the ClientValidationFunction to ValidatePassword. In the head section of the

HTML source, add the client-side code from the listing ―JavaScript Client-Side

Validation,‖ shown earlier in this lesson.

8. Add the ServerValidate event handler method to the code-behind page. In this

method, add the code from the listing ―ServerValidate Handler,‖ shown earlier in

this lesson.

9. The password and confirm password must be the same, so add a CompareValidator

next to the txtConfirm TextBox. Set the ControlToValidate to the txtConfirm con

trol. Set the ControlToCompare property to txtPassword. Set the ErrorMessage to

Password and Confirm Password must match.

10. Add a RegularExpressionValidator beside the txtZip control. Set the ControlToValidate

to the txtZip control. Set the ErrorMessage to Must be formatted as 99999 or

99999-9999. Set the ValidationExpression to U.S. Zip Code to provide a regular

expression of \d{5}(-\d{4})?.

11. For each of the validator controls, set the Display property to Dynamic.

12. Copy the ErrorMessage contents to the ToolTip for each of the validator controls.

13. Notice that setting the ErrorMessage property changes the text that displays beside

each TextBox control. The ErrorMessage should only be displayed in a Validation-

Summary control at the bottom of the Web page, so set the Text property of each of

the validator controls to an asterisk (*).

14. Add a ValidationSummary control to the bottom of the Web page. The completed

Web page is shown in Figure 6-4.

Figure 6-4 The completed Web page containing all validation controls.

� Exercise 3: Test the Validation Controls

In this exercise, you run the Web page and test the validation controls.

478

Chapter 6 Input Validation and Site Navigation

1. Continue with the project from the previous exercise, or open the completed

Lesson 1, Exercise 2 project from the CD.

2. Run the Web page.

3. Before entering any information into the TextBox controls, press the Submit but

ton. Verify that the RequiredFieldValidators are displayed by noting the errors that

are displayed in the ValidationSummary control and by hovering your pointer

over each of the asterisks to see each ToolTip.

4. Test the user name validation by typing fewer than six characters into txtUser

and click the Submit button. Note the validation error. Also, try typing 15 or

more characters. Attempt to type 10 characters, but use an invalid character,

such as the apostrophe ('). Finally, attempt valid input to ensure the validator’s

ability to report valid input.

5. Test the password for the appropriate input by trying to input fewer than 6 char

acters or more than 14 characters. Also, attempt a password that is all lowercase,

or all uppercase, or all numeric. Notice that special characters, such as plus sign

(+), minus sign (-), and percent sign (%), are allowed in the password, but not

required. Finally, attempt to enter a valid password.

6. Test the confirmation password by typing a confirmation password that does

not match the password. Test again with a matching password.

7. Test the Zip Code by entering fewer than five characters, or characters that don’t

match the format specified in the regular expression. Finally, test with a valid Zip

Code.

Lesson 2: Performing Site Navigation

Lesson 2: Performing Site Navigation

481

Controls that perform PostBacks typically post to the same Web page as part of the typ

ical Web page life cycle, but there are many scenarios where you want to collect data

from the user while navigating from one Web page to another. Seamless navigation

from one Web page to another is what makes a collection of Web pages feel like a Web

application. In this lesson, you will learn the ways to navigate between Web pages on

your site.

After this lesson, you will be able to:

■ Assign focus to a control on a page when it is displayed.

■ Avoid round trips by using client-side scripts.

■ Redirect users to another page by using server-side methods.

■ Use the SiteMap Web server control to display a representation of a site’s navigation

structure.

■ Implement pagination for controls on a page by using the Pager Web server control.

Estimated lesson time: 60 minutes

Is Site Navigation Necessary?

When collecting data from users, you can provide navigation to many Web pages to

display prompts and collect the data, but you can also provide the illusion of navigat

ing many pages to collect data. To provide the illusion of navigating many pages to dis

play prompts to collect data, you may choose to use the Wizard control or FormView,

which are covered in Chapter 3, ―Exploring Specialized Server Controls.‖ These con

trols provide a Pager control to navigate from one data collection screen to another,

but both of the screens are on the same Web page, which means that it is somewhat

easier to gather all of the data for processing.

The Wizard and FormView controls can simplify your data presentation and collection

efforts but may not be suitable for every possible scenario.

Choosing a Method to Navigate Pages

There are many ways to navigate from page to page, so it’s helpful to first identify these

ways and then look at each in detail.

482

Chapter 6 Input Validation and Site Navigation

■ Provide client-side code or markup to request a new Web page. Your client code

or markup requests a new Web page in response to a client-side event, such as a

button click.

■ Cross-page posting. A control is configured to perform a PostBack to a different

Web page.

■ Issue client-side browser redirect. Your server-side code sends a message to the

browser, informing the browser to request a different Web page.

■ Issue server-side transfer. Your server-side code transfers control to a different

Web page.

Providing Client-Side Code or Markup to Request a New Web Page

One of the easiest ways to navigate to a different Web page is to provide a HyperLink

control on the form and set the NavigateUrl property to the desired destination. The

HyperLink control generates an <a> element in the HTML and the NavigateUrl prop

erty is placed into the href attribute of the <a> element. The following example shows

the source of a HyperLink control and its rendered HTML.

HyperLink Control: Source
<asp:HyperLink ID="HyperLink1"

runat="server" NavigateUrl="~/NavigateTest2.aspx">

Goto NavigateTest2

</asp:HyperLink>

HyperLink Control: Rendered HTML
Goto NavigateTest2

In this example, if this control is placed on a Web page called NavigateTest1.aspx, and the

HyperLink control is clicked, the browser simply requests the NavigateTest2.aspx page. This

means that no data is posted to NavigateTest2.aspx, and if data is required to pass to

NavigateTest2.aspx, you need to find a way to get the data to the page.

Your client-side code can also perform Web page navigation by changing the docu

ment object’s location property to a new URL. The document object is the object that

represents the Web page; setting its location property causes the browser to request

the Web page at the new URL.

The following example contains an HTML <input type="button"> element with a bit of

client-side JavaScript to request the NavigateTest2.aspx page when the button is

clicked.

<input id="Button1" type="button"

value="Goto NavigateTest2"

onclick="return Button1_onclick()" />

Lesson 2: Performing Site Navigation

483

Notice that the onclick event is configured to call the client-side method (called

Button1_onclick). The JavaScript source for the Button1_onclick method is added into

the <head> element as follows:

<script language="javascript" type="text/javascript">

// <!CDATA[

function Button1_onclick() {

 document.location="NavigateTest2.aspx";

}

//]]>

</script>

Once again, the NavigateTest2.aspx page is requested and no data is posted back to

the Web server.

Cross-page Posting

Cross-page posting is frequently desired in a scenario where data is collected on one

Web page and processed on another Web page that displays the results. In this sce

nario, a Button control has its PostBackUrl property set to the Web page to post back

to. In the processing page, which is the Web page that you post back to, the data from

the first Web page is available.

NOTE New in ASP.NET 2.0

The Page class’s PreviousPage property is new in ASP.NET 2.0.

The processing page typically needs to access the data from the first page, which is

possible by using the PreviousPage property of the Page object. The PreviousPage prop

erty is set if you are cross-page posting, and if the PreviousPage is set to Nothing (C#

null), no cross-page posting occurs. You can access any of the controls in the previous

page by using the FindControl method on the NamingContainer of the control that you

are trying to locate.

In the following example, the Web page called NavigateTest2.aspx contains a TextBox

control called txtData and a Button control with its PostBackUrl set to ~/

NavigateTest3.aspx. The NavigateTest3.aspx page contains a Label control called lbl-

Data that is populated with the data from txtData if NavigateTest3.aspx, which was

called by using a cross-page PostBack, as shown in the following example:

484

Chapter 6 Input Validation and Site Navigation

'VB

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles Me.Load

 If PreviousPage Is Nothing Then

lblData.Text = "No PreviousPage"

Else

lblData.Text = _

 CType(PreviousPage.FindControl("txtData"), TextBox).Text

 End If

End Sub

//C#

protected void Page_Load(object sender, EventArgs e)

{

 if(PreviousPage == null)

{

lblData.Text = "No PreviousPage";

}

else

 {

lblData.Text =

((TextBox)PreviousPage.FindControl("txtData")).Text;

}

}

Accessing Strongly Typed Data

Another way to access the previous page data is to create public properties that

expose the data that you need to access. After creating public properties, you need to

set the PreviousPageType directive on the result page.

NOTE New in ASP.NET 2.0

The PreviousPageType directive is new in ASP.NET 2.0.

In the following example, the NavigateTest3.aspx page performs a cross-page PostBack

to NavigateTest4.aspx using a public property and the PreviousPageType directive. The

NavigateTest3.aspx contains a TextBox control named txtData and a Button control on

which the PostBackUrl property has been set to ~/NavigateTest4.aspx. The following

property was placed into the NavigateTest3.aspx code-behind page:

'VB

public readonly property PageData

Get

return txtData.Text

 End Get

End Property

//C#

public string PageData

{

 get { return txtData.Text; }}

Lesson 2: Performing Site Navigation

485

In order to access this property, you need to set PreviousPageType directive in the

NavigateTest4.aspx page. This directive is added after the Page directive and looks like

this:

<%@ PreviousPageType VirtualPath="~/NavigateTest3.aspx" %>

The NavigateTest4.aspx page contains a Label control named lblData and is popu

lated from the PageData property, as is shown in the following code snippet:

'VB

Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

 If PreviousPage Is Nothing Then

lblData.Text = "No PreviousPage"

Else

lblData.Text = _

 PreviousPage.PageData

 End If

End Sub

//C#

protected void Page_Load(object sender, EventArgs e)

{

 if (PreviousPage == null)

{

lblData.Text = "No PreviousPage";

}

else

 {

lblData.Text =

PreviousPage.PageData;

}

}

When you attempt to enter this code snippet, you may find that IntelliSense doesn’t

show the PageData property. Simply build the page that causes the data type of the

PreviousPage property to be set to NavigateTest3_aspx, and the PageData property is vis

ible in the IntelliSense window.

Issuing Client-Side Browser Redirect

The Response object has a method called Redirect that you can use in your server-side

code to instruct the browser to request a different page. In this scenario, you post back

486

Chapter 6 Input Validation and Site Navigation

to the original page. The server-side code can process the PostBack and then execute

the Redirect, as shown in the following example, where the NavigateTest4.aspx page

contains a Button control that performs a redirect to the NavigateTest5.aspx page

when the Button is clicked:

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Response.BufferOutput = True

 'process data

 Response.Redirect("NavigationTest5.aspx")

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

 Response.BufferOutput = true;

 //process data

 Response.Redirect("NavigationTest5.aspx");

}

Notice that the BufferOutput must be set to true in order to perform the redirect to

ensure that no data is sent to the browser prior to executing the Redirect method. If

data is sent to the browser prior to executing the Redirect method, an HttpException is

thrown, indicating that you cannot redirect after the Hypertext Transfer Protocol

(HTTP) headers are sent.

The redirect is accomplished by sending an HTTP response code of 302 to the

browser along with the URL of the page to redirect to. The address that is displayed

in the browser is updated to reflect the new URL location. Note that this comes at the

cost of performing an extra round trip to the server.

The PreviousPage property does not get populated when using the Redirect method. To

access data from the original page, you need to resort to traditional methods of pass

ing data, such as placing the data into cookies, session state variables, or passing the

data in the QueryString.

Issuing Server-Side Transfer

In your server-side code, you can switch control to a different Web page by using the

Transfer method on the HttpUtility object. An instance of the HttpUtility class is

stored on the Page object, in the Server property. Like the previous redirect example,

you post back to the original page. The server-side code can process the PostBack

Lesson 2: Performing Site Navigation

487

and then execute the Transfer method, as shown in the following example, where

the NavigateTest5.aspx page contains a Button control that performs a transfer to

the NavigateTest6.aspx page when the Button is clicked.

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

Server.Transfer("NavigationTest6.aspx", False)

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

Server.Transfer("NavigationTest6.aspx", false);

}

The Transfer method accepts a Boolean parameter called preserveForm that you set to

indicate your desire to keep the form and QueryString data. It is generally better to set

this to false. You can also access the PreviousPage property to pass data between pages,

just as you do when cross-page posting.

Using the Site Map Web Server Control

ASP.NET 2.0 provides a means to specify a site structure and a number of controls

that perform navigation and display the site map on your Web page.

NOTE New in ASP.NET 2.0

The Site Map is new in ASP.NET 2.0.

The following controls can be used to display site map data:

■ Menu Shows the site structure and allows the user to select a location to navi

gate to.

■ TreeView Shows the site structure in a collapsible tree format and allows the

user to select a location to navigate to.

■ SiteMapPath Shows the current location and the path of pages to go through to

get there as a breadcrumb-like trail. For example, if you are on the Microsoft Web

site getting help on Visual Studio .NET, the site map path might display some

thing like this:

Home > Visual Studio > Support

488

Chapter 6 Input Validation and Site Navigation

These controls typically provide client-side markup to navigate the Web site hierarchy.

The TreeView and Menu controls use the SiteMapDataSource control as a source for the

site map data that is displayed. By default, the SiteMapDataSource gets its data from the

Web.sitemap file, which is a specially formatted XML file that is located in the root of

the Web site. The SiteMapPath control gets its data directly from the Web.sitemap file.

You can add the Web.sitemap file to your Web application by right-clicking your Web

site, selecting Add New Item | Site Map, and accepting the default name of

Web.sitemap. The Web.sitemap looks like the following:

<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="" description="">

<siteMapNode url="" title="" description="" />

<siteMapNode url="" title="" description="" />

 </siteMapNode>

</siteMap>

Using the SiteMap Class

The SiteMap class provides programmatic access to the site navigation hierarchy. Its

two primary properties are RootNode and CurrentNode, and both return SiteMapNode

instances. The SiteMapNode object represents a node in the site map and has proper

ties called Title, Url, and Description. To access nodes in the hierarchy, you can use the

SiteMapNode instance’s ParentNode, ChildNodes, NextSibling, and PreviousSibling prop

erties. For example, the following code snippet can be used to navigate to the Web

page that is listed as the parent Web page in the Web.sitemap file.

'VB

Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Response.Redirect(SiteMap.CurrentNode.ParentNode.Url)

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

 Response.Redirect(SiteMap.CurrentNode.ParentNode.Url);

}

Quick Check

Lesson 2: Performing Site Navigation

489

■ Which method of navigation requires the most communication between

the browser and the Web server?

Quick Check Answer

■ Client-side browser redirect requires the most communication because this

is a server-side method that tells the browser to request a new page, thus

causing multiple round trips to the server.

Lab: Working With Site Navigation

In this lab, you create a Web application using frames. The top frame contains a title

for your Web application and a SiteMapPath control. The left frame contains a Tree-

View control for navigation. Clicking any node on the TreeView or SiteMapPath con

trols cause the main frame to load the desired page.

� Exercise 1: Create the Web Application Project and Its Frames

In this exercise, you create the Web application project. You also configure

Default.aspx to be a frames page and add the top and left frames.

1. Open Visual Studio 2005 and create a new Web Application project called Work

ingWithSiteNavigation using your preferred programming language.

The new project will create a Web page called Default.aspx, which will be con

figured to be the frames page for the Web application.

2. Configure the Default.aspx page to have a top frame, a left frame, and a main

frame. Remove the code-behind page as well. Your Default.aspx should look like

the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

Error! Hyperlink reference not valid.

<html xmlns="http://www.w3.org/1999/xhtml">

<head id="Head1" runat="server">

 <title>Frame Page</title>

</head>

<frameset rows="70, *" >

 <frame src="TitlePage.aspx">

 <frameset cols="20%, 80%">

 <frame src="MenuPage.aspx" >

 <frame src="MainPage.aspx" name="MainFrame">

 </frameset>

 <noframes>

 This is a frames page.

490

Chapter 6 Input Validation and Site Navigation

 </noframes>

</frameset>

</html>

3. Add a new Web page called TitlePage.aspx for the top frame.

4. On the TitlePage.aspx page, add a textual title called Working With Site Naviga

tion. Set the font size for the title to xx-large and center the title text.

5. Add a new Web page called MenuPage.aspx for the left frame.

6. On the MenuPage.aspx page, add a TreeView control.

7. Select the TreeView control and click the symbol in the upper-right corner of the

control to reveal the TreeView Tasks window. Click the drop-down list for the

Choose Data Source option and click New Data Source. Click Site Map as the

data source and click OK.

8. In the Source View window, locate the <head> element and add the following

directive to specify that the hyperlinks use the MainFrame as their target window:

<base target="MainFrame"/>

9. Add a Site Map to the Web application by right-clicking the Web application in

the Solution Explorer and clicking Add New Item. Click Site Map, keep the

default file name of Web.sitemap, and click Add.

10. Change the Web.sitemap file to look like the following:

<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="~/MainPage.aspx" title="Main Page"

 description="This is the main page.">

 <siteMapNode url="~/Support.aspx" title="Support Page"

description="The support page." >

 <siteMapNode url="~/Faqs.aspx" title="FAQs Page"

 description="The frequently asked questions page." />

 </siteMapNode>

 <siteMapNode url="~/Products.aspx" title="Products Page"

description="The products page." />

</siteMapNode>

</siteMap>

11. Add the following Web pages to the Web application: MainPage.aspx, Support.aspx,

Faqs.aspx, and Products.aspx. On each of these pages, add a SiteMapPath control.

12. Build the Web application project.

� Exercise 2: Test the Site Navigation

Lesson 2: Performing Site Navigation

491

In this exercise, you test the site navigation on the Web application.

1. Continue with the project from the previous exercise, or open the completed

Lesson 2, Exercise 1 project from the CD.

2. Right-click the Default.aspx page, and select Start As Start Page.

3. Test the Web application by pressing F5 to display the Default.aspx frame page.

You should see the frames page, as shown in Figure 6-5.

Figure 6-5 The frames page with the TreeView and SiteMapPath controls.

4. Try clicking the links on the TreeView control.

5. Try clicking the links on the SiteMapPath controls.

Chapter 7

ASP.NET State Management

Web pages rarely stand alone. Applications almost always need to track users who

visit multiple pages within a Web site, whether to provide personalization, store infor

mation about a user, or track usage for reporting purposes.

At a high level, ASP.NET provides two different types of state management: client-side

and server-side. Client-side state management stores information on the client’s com

puter by embedding the information into a Web page, a Uniform Resource Locator

(URL), or a cookie. Server-side state management tracks the user with a cookie or a

URL but stores the information about a user in the server’s memory or a database.

Exam objectives in this chapter:

■ Manage state and application data.

❑ Manage state of an application by using client-based state management

options.

❑ Manage state of an application by using server-based state management

options.

❑ Maintain state of an application by using database technology.

■ Create event handlers for pages and controls.

❑ Respond to application and session events.

Lessons in this chapter:

■ Lesson 1: Using Client-Side State Management . 499

■ Lesson 2: Using Server-Side State Management . 519

497

498

Chapter 7 ASP.NET State Management

Before You Begin

To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and be comfortable with the following:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed on your

computer with SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

Real World

Tony Northrup

Back in the old days (you know, before the .NET Framework), tracking a user’s

visit across a Web site was a real pain because I had to write all the code to asso

ciate data with cookies. Of course, that only worked if the browser supported

cookies—if I wanted to provide an alternate technique for tracking users, I had to

write that code, too.

State management in ASP.NET now provides those capabilities for developers,

saving us the hassle of writing the same type of code over and over again. That’s

exactly what development frameworks should do—minimize redundant devel

opment so developers can focus on the more interesting coding. As you’re work

ing through this lesson, think about how long it would take you to duplicate all

the state management functionality provided with the .NET Framework.

Lesson 1: Using Client-Side State Management

Lesson 1: Using Client-Side State Management

499

The most scalable way to perform state management is to store the data on the client.

ASP.NET provides several techniques for storing state management information on

the client:

■ View state ASP.NET uses view state to track values in controls. You can add cus

tom values to view state, too.

■ Control state If you create a custom control that requires view state to work

properly, you should use control state to ensure other developers don’t break

your control by disabling view state.

■ Hidden fields Like view state, hidden fields store data in an HTML form without

displaying it in the user’s browser. That data is available only when the form is

processed.

■ Cookies Cookies store a value in the user’s browser that the browser sends with

every page request to the same server. Cookies are the best way to store state

data that must be available for multiple Web pages on a Web site.

■ Query strings Query strings store values in the URL that are visible to the user.

Use query strings when you want a user to be able to e-mail or instant message

state data with a URL.

In this lesson, you will first learn when to choose client-side over server-side state

management. Then you will learn how to implement view state, control state, hidden

fields, cookies, and query strings.

After this lesson, you will be able to:

■ Choose between client-side and server-side state management.

■ Use view state to store custom values.

■ Use control state to store values for custom controls even if view state is disabled.

■ Use hidden fields to store values in a Web form.

■ Use cookies to track state management data as a user browses multiple pages in a

Web site.

■ Use query strings to pass values to a page using a hyperlink.

Estimated lesson time: 30 minutes

500

Chapter 7 ASP.NET State Management

Choosing Client-Side or Server-Side State Management

State management information, such as user name, personalization options, or

shopping cart contents, can be stored at either the client or the server. If the state

management information is stored on the client, the client submits the information

to the server with each request. If the state management information is stored on the

server, the server stores the information, but tracks the client using a client-side

state management technique. Figure 7-1 illustrates both client-side and server-side

state management.

Client-side state management

I am ―Tony,‖ I prefer

the color red, and I

have item 117 in

my shopping cart. Web server

Session 432 is ―Tony,‖

he likes the color red, and

he has item 117 in his

shopping cart.
Server-side state management

I am session 432

Web server

Figure 7-1 Client-side state management stores data on the client, while server-side state manage

ment requires the server to store the data.

Storing information on the client has the following advantages:

■ Better scalability With server-side state management, each client that connects

to the Web server consumes memory on the Web server. If a Web site has hun

dreds or thousands of simultaneous users, the memory consumed by storing

state management information can become a limiting factor. Pushing this bur

den to the clients removes that potential bottleneck.

Lesson 1: Using Client-Side State Management

501

■ Supports multiple Web servers With client-side state management, you can dis

tribute incoming requests across multiple Web servers with no changes to your

application because the client provides all the information the Web server needs

to process the request. With server-side state management, if a client switches

servers in the middle of the session, the new server does not necessarily have

access to the client’s state information. You can use multiple servers with server-

side state management, but you need either intelligent load-balancing (to always

forward requests from a client to the same server) or centralized state manage

ment (where state is stored in a central database that all Web servers access).

Storing information on the server has the following advantages:

■ Better security Client-side state management information can be captured

(either in transit or while it is stored on the client) or maliciously modified.

Therefore, you should never use client-side state management to store confi

dential information, such as a password, authorization level, or authentication

status.

■ Reduced bandwidth If you store large amounts of state management informa

tion, sending that information back and forth to the client can increase band

width utilization and page load times, potentially increasing your costs and

reducing scalability. The increased bandwidth usage affects mobile clients most

of all, because they often have very slow connections. Instead, you should store

large amounts of state management data (say, more than 1 KB) on the server.

View State

As you might have already noticed, if a user clicks a button to submit an ASP.NET

page, the page retains all its values and settings. For example, if you modify the text on

a label and the user clicks a button, the modified text is still displayed when the page

reappears. This happens because ASP.NET has a client-side state management tech

nique built in: ViewState.

The ViewState property provides a dictionary object for retaining values between mul

tiple requests for the same page. When an ASP.NET page is processed, the current

state of the page and controls is hashed into a string and saved in the page as a hidden

502

Chapter 7 ASP.NET State Management

field. If the data is too long for a single field (as specified in the MaxPageStateField-

Length property), then ASP.NET performs view state chunking to split it across multi

ple hidden fields. The following code sample demonstrates how view state adds data

as a hidden form within a Web page’s HTML:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/

wEPDwUKMTIxNDIyOTM0Mg9kFgICAw9kFgICAQ8PFgIeBFRleHQFEzQvNS8yMDA2IDE6Mzc6MTEgUE1kZGROWHn/

rt75XF/pMGnqjqHlH66cdw==" />

NOTE .NET 2.0

View state chunking is new in ASP.NET, version 2.0.

The sections that follow describe how to encrypt view state data, disable view state data,

and add custom values to the view state.

Encrypting View State Data

You can enable view state encryption to make it more difficult for attackers and mali

cious users to directly read view state information. This adds processing overhead to

your Web server; however, it is necessary if you plan to store confidential information

in the view state. To configure view state encryption for an application, set the <pages

viewStateEncryptionMode> attribute to Always in your Web.config file, as the following

example shows:

<configuration>

 <system.web>

 <pages viewStateEncryptionMode="Always"/>

 </system.web>

</configuration>

Alternatively, you can enable view state encryption for a specific page by setting the

value in the page directive, as the following sample demonstrates:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default"

ViewStateEncryptionMode="Always"%>

Because ViewState supports encryption, it is the most secure method of client-side

state management. Encrypted ViewState is secure enough for most security require

ments; however, it is always more secure to store data on the server.

Disabling ViewState Data

View state is enabled by default for every control, including Label controls, which you

might never change. Unfortunately, view state adds overhead to ASP.NET forms. If

http://ASP.NET

Lesson 1: Using Client-Side State Management

503

you do not need to use view state, you should disable it by setting the EnableViewState

property for each Web control to False. This reduces server processing time and

decreases page size.

Reading and Writing Custom ViewState Data

You can also add and retrieve custom values with ViewState. If you have a value that

you’d like to keep track of while the user is visiting a single ASP.NET Web page, add

ing a custom value to ViewState is the most efficient and secure way to do that. How

ever, ViewState is lost if the user visits a different Web page, so it is useful only for

temporarily storing values.

The following code demonstrates how to determine whether the time of the last visit

was recorded in ViewState, how to display the value in a Label control named Label1,

and then to set the value using the current time. To use this code, create a form with

a Label control named Label1 and a Button control:

'VB

' Check if ViewState object exists, and display it if it does

If (Me.ViewState("lastVisit") IsNot Nothing) Then

 Label1.Text = CType(Me.ViewState("lastVisit"), String)

Else

 Label1.Text = "lastVisit ViewState not defined!"

End If

' Define the ViewState object for the next page view

Me.ViewState.Add("lastVisit", DateTime.Now.ToString())

//C#

// Check if ViewState object exists, and display it if it does

if (ViewState["lastVisit"] != null)

 Label1.Text = (string)ViewState["lastVisit"];

else

 Label1.Text = "lastVisit ViewState not defined.";

// Define the ViewState object for the next page view

ViewState.Add("lastVisit", DateTime.Now.ToString());

While cookies must be strings, you can store a wide variety of serializable objects in

ViewState. The following example stores a DateTime object in ViewState without con

verting it to a string and also uses a different technique for adding a ViewState value:

'VB

' Check if ViewState object exists, and display it if it does

If (Me.ViewState("lastVisit") IsNot Nothing) Then

 Dim lastVisit As DateTime = CType(Me.ViewState("lastVisit"), DateTime)

 Label1.Text = lastVisit.ToString()

504

Chapter 7 ASP.NET State Management

Else

 Label1.Text = "lastVisit ViewState not defined!"

End If

' Define the ViewState object for the next page view

Me.ViewState("lastVisit") = DateTime.Now

//C#

// Check if ViewState object exists, and display it if it does

if (ViewState["lastVisit"] != null)

 Label1.Text = ((DateTime)ViewState["lastVisit"]).ToString();

else

 Label1.Text = "lastVisit ViewState not defined.";

// Define the ViewState object for the next page view

ViewState["lastVisit"] = DateTime.Now;

Quick Check

1. How do ASP.NET Web forms remember the settings for controls between

user requests?

2. Is view state lost if a user refreshes a Web page? What if the user e-mails a

URL to a friend?

Quick Check Answers

1. View state, which is enabled by default, remembers values for control prop

erties on a form.

2. View state is maintained within a page’s HTML, so it is lost if a page is

refreshed or if the URL is copied.

Control State

If you create a custom control that requires ViewState, a developer who uses the con

trol might break its functionality by disabling ViewState for the control or the entire

page. To solve this, you can use the ControlState property to store state information for

your control. ControlState allows you to persist property information that is specific to

a control and cannot be turned off like the ViewState property. To use control state in

a custom control, your control must override the OnInit method and call the Register-

RequiresControlState method during initialization and then override the SaveControl-

State and LoadControlState methods.

NOTE .NET 2.0

ControlState is new in ASP.NET version 2.0

Lesson 1: Using Client-Side State Management

505

ControlState takes away the developer’s choice of turning off ViewState for a control.

Typically, it’s better to let developers choose how to use the controls. However, if a con

trol simply cannot function without ViewState, you should implement ControlState.

Hidden Fields

ViewState stores information in the Web page using hidden fields. Hidden fields are

sent back to the server when the user submits a form; however, the information is

never displayed by the Web browser (unless the user chooses to view the page

source). ASP.NET allows you to create your own custom hidden fields and store val

ues that are submitted with other form data.

A HiddenField control stores a single variable in its Value property and must be explic

itly added to the page. You can use hidden fields only to store information for a single

page, so it is not useful for storing session data. If you use hidden fields, you must sub

mit your pages to the server using Hypertext Transfer Protocol (HTTP) POST (which

happens if the user presses a button) rather than requesting the page using HTTP GET

(which happens if the user clicks a link). Unlike view state data, hidden fields have no

built-in compression, encryption, hashing, or chunking, so users can view or modify

data stored in hidden fields.

Cookies

Web applications can store small pieces of data in the client’s Web browser by using

cookies. A cookie is a small amount of data that is stored either in a text file on the cli

ent file system (if the cookie is persistent) or in memory in the client browser session

(if the cookie is temporary). The most common use of cookies is to identify a single

user as he or she visits multiple Web pages. You can also use cookies to store state

information, user preferences, or an encrypted token indicating that the user has been

successfully authenticated.

Figure 7-2 illustrates how Web clients and servers use cookies. First (Step 1), the Web

client requests a page from the server. Because the client has not visited the server

before, it does not have a cookie to submit. When the Web server responds to the

request (Step 2), the Web server includes a cookie. The Web client submits that cookie

with each subsequent request for any page on the same server (Steps 3, 4, and any

future page views).

506

Chapter 7 ASP.NET State Management

1

Client

2

3

4

Cookie: ASP.NET_SessionId:

0vnwxe55bpf1owumdwevy03m

Cookie: ASP.NET_SessionId:

0vnwxe55bpf1owumdwevy03m

Cookie: ASP.NET_SessionId:

0vnwxe55bpf1owumdwevy03m

Web server

Figure 7-2 Web servers use cookies to track Web clients.

NOTE Inside ASP.NET

As described in Lesson 2 of this chapter, ASP.NET uses cookies to track user sessions.

Cookies are the most flexible and reliable way of storing data on the client. However,

users can delete the cookies on their computers at any time. Even if you store cookies

with long expiration times, a user might decide to delete all cookies, wiping out any

settings you might have stored in them. Therefore, if you rely on persistent cookies to

store information about a user between visits, you should also allow users to log in to

your Web application so you can restore persistent cookies in the event the users

remove their cookies.

Reading and Writing Cookies

A Web application creates a cookie by sending it to the client as a header in an HTTP

response. The Web browser then submits the same cookie to the server with every

new request.

To create a cookie, add a value to the Response.Cookies HttpCookieCollection. To view a

cookie sent back by the Web browser, read values in Request.Cookies. The following

sample code (which belongs in the Page_Load event handler) demonstrates both

defining and reading cookie values by setting a cookie named ―lastVisit‖ to the cur

rent time. If the user already has the cookie set, the code displays the time the user last

visited the page in the Label1 control.

'VB

' Check if cookie exists, and display it if it does

If Not (Request.Cookies("lastVisit") Is Nothing) Then

 ' Encode the cookie in case the cookie contains client-side script

 Label1.Text = Server.HtmlEncode(Request.Cookies("lastVisit").Value)

Else

 Label1.Text = "No value defined"

End If

' Define the cookie for the next visit

Lesson 1: Using Client-Side State Management

507

Response.Cookies("lastVisit").Value = DateTime.Now.ToString

Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)

//C#

// Check if cookie exists, and display it if it does

if (Request.Cookies["lastVisit"] != null)

 // Encode the cookie in case the cookie contains client-side script

 Label1.Text = Server.HtmlEncode(Request.Cookies["lastVisit"].Value);

else

 Label1.Text = "No value defined";

// Define the cookie for the next visit

Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();

Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);

NOTE The HttpCookie class

This example shows the simplest and most common way of creating cookies. You can also create

instances of the HttpCookie class and add them to the HttpCookieCollection.

The first time the user visits the page in the previous example, the code displays ―No

value defined‖ because the cookie has not yet been set. However, if you refresh the

page, it displays the time of the first visit. Note that the code sample defines the

Expires property for the cookie. You must define the Expires property and set it for the

time period you would like the client to store the cookie if you want the cookie to per

sist between browser sessions. If you do not define the Expires property, the browser

stores it in memory and the cookie is lost if the user closes his or her browser.

To delete a cookie, overwrite the cookie and set an expiration date in the past. You

can’t directly delete cookies because they are stored on the client’s computer.

NOTE Viewing and troubleshooting cookies

As described in Chapter 1, ―Introducing the ASP.NET 2.0 Web Site,‖ you can use Trace.axd to view

cookies for every page request.

Controlling Cookie Scope

Some Web sites store private information in cookies. For that reason, you don’t want

a browser to send your cookie to other Web sites. By default, browsers won’t send a

cookie to a Web site with a different hostname (although, in the past, vulnerabilities

in browsers have allowed attackers to trick a browser into submitting another Web

site’s cookie).

508

Chapter 7 ASP.NET State Management

You can control a cookie’s scope to either limit the scope to a specific folder on the

Web server or expand the scope to any server in a domain. To limit the scope of a

cookie to a folder, set the Path property, as the following example demonstrates:

'VB

Response.Cookies("lastVisit").Value = DateTime.Now.ToString

Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)

Response.Cookies("lastVisit").Path = "/Application1"

//C#

Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();

Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);

Response.Cookies["lastVisit"].Path = "/Application1";

With the scope limited to ―/Application1‖, the browser submits the cookie to any page

in the /Application1 folder, but not to pages in other folders, even if they are on the

same server.

To expand the scope to an entire domain, set the Domain property, as the following

example demonstrates:

'VB

Response.Cookies("lastVisit").Value = DateTime.Now.ToString

Response.Cookies("lastVisit").Expires = DateTime.Now.AddDays(1)

Response.Cookies("lastVisit").Domain = "contoso.com"

//C#

Response.Cookies["lastVisit"].Value = DateTime.Now.ToString();

Response.Cookies["lastVisit"].Expires = DateTime.Now.AddDays(1);

Response.Cookies["lastVisit"].Domain = "contoso.com";

Setting the Domain property to ―Contoso.com‖ causes the browser to submit the

cookie to any server in the contoso.com domain, which might include www.con

toso.com, intranet.contoso.com, or private.contoso.com. Similarly, you can use the

Domain property to specify a full hostname, limiting the cookie to that specific server.

Storing Multiple Values in a Cookie

Though it depends on the browser, you typically can’t store more than 20 cookies per

site, and each cookie can be a maximum of 4 KB in length. To work around the 20-cookie

limit, you can store multiple values in a cookie, as the following code demonstrates:

'VB

Response.Cookies("info")("visit") = DateTime.Now.ToString()

Response.Cookies("info")("firstName") = "Tony"

Response.Cookies("info")("border") = "blue"

Response.Cookies("info").Expires = DateTime.Now.AddDays(1)

http://toso.com
http://toso.com
http://private.contoso.com

//C#

Lesson 1: Using Client-Side State Management

509

Response.Cookies["info"]["visit"].Value = DateTime.Now.ToString();

Response.Cookies["info"]["firstName"].Value = "Tony";

Response.Cookies["info"]["border"].Value = "blue";

Response.Cookies["info"].Expires = DateTime.Now.AddDays(1);

Running the code in this example sends a cookie with the following value to the Web

browser:

(visit=4/5/2006 2:35:18 PM) (firstName=Tony) (border=blue)

Cookie properties, such as Expires, Domain, and Path, apply for all values within a

cookie. You can access individual values within the cookie using Request.Cookies in

exactly the same way you define the values.

Query Strings

Query strings are commonly used to store variables that identify specific pages, such as

search terms or page numbers. A query string is information that is appended to the end

of a page URL. A typical query string might look like the following real-world example:

http://support.microsoft.com/Default.aspx?kbid=315233

In this example, the URL identifies the Default.aspx page. The query string (which

starts with a question mark [?]) contains a single parameter named ―kbid,‖ and a value

for that parameter, ―315233.‖ Query strings can also have multiple parameters, such

as the following real-world URL, which specifies a language and query when search

ing the Microsoft.com Web site:

http://search.microsoft.com/results.aspx?mkt=en-US&setlang=en-US&q=hello+world

The values in this query string can be retrieved from within the ASP.NET page using

the objects shown in Table 7-1.

Table 7-1 Sample Query String Values

Value Name

mkt

setlang

q

ASP.NET Object

Request.QueryString["mkt"]

Request.QueryString["setlang"]

Request.QueryString["q"]

Value

en-US

en-US

hello world

Query strings provide a simple but limited way to maintain state information between

multiple pages. For example, they are an easy way to pass information from one page

http://support.microsoft.com/Default.aspx?kbid=315233
http://search.microsoft.com/results.aspx?mkt=en-US&setlang=en-US&q=hello+world

510

Chapter 7 ASP.NET State Management

to another, such as passing a product number from a page that describes a product to

a page that adds the item to a user’s shopping cart. However, some browsers and cli

ent devices impose a 2083-character limit on the length of the URL. Another limita

tion is that you must submit the page using an HTTP GET command in order for

query string values to be available during page processing. Therefore, you shouldn’t

add query strings to button targets in forms.

IMPORTANT Always validate user input

You should expect users to modify data in query strings. For that reason, you must always validate

data stored in query strings.

Query string data is included in bookmarks and when users e-mail URLs. In fact, it’s

the only way to enable a user to include state data when copying and pasting a URL

to another user. For that reason, you should use query strings for any information that

uniquely identifies a Web page, even if you are also using another state-management

technique.

IMPORTANT Practical query string character limits

Browsers have 2083-character limits on URLs, but you’ll start to have problems with much shorter-

length URLs if users e-mail them using plain-text e-mail or send them to other users via instant

message. To allow a URL to be e-mailed, limit the length to 70 characters (including the http:// or

https://). To allow a URL to be sent via instant message, limit the length to 400 characters.

Real World

Tony Northrup

While only the most sophisticated users are comfortable modifying cookies or

hidden fields, many casual users know how to change query strings. For exam

ple, the first interactive Web application I ever wrote allowed a user to rate pic

tures on a scale from 1 to 10, and the user’s rating was submitted as a query

string value. For example, if the user rated a picture 7, the query string might

read ―page.aspx?pic=342&rating=7.‖ One day I noticed a picture with a rating

above 100—a clever user had manually changed the query string to include a

very large value, and my application had added the rating to the database with

out validation. To fix the problem, I added code to reject any request with a rat

ing more than 10 or less than 1.

Lesson 1: Using Client-Side State Management

511

A common mistake I see is that developers use query strings to allow users to

navigate search results but do not validate the query strings properly. Often,

query strings for search results have query strings for the search terms, the num

ber of results per page, and the current page numbers. If you don’t validate the

query string, the user can set the number of results per page to a huge number,

such as 10,000. Processing thousands of search results can take several seconds

of your server’s processing time and cause your server to transmit a very large

HTML page. This makes it very easy for an attacker to perform a denial-of-service

attack on your Web application by requesting the search page repeatedly.

Don’t ever trust values from a query string; they must always be validated.

To write query string values, modify the URL for any hyperlink the user might click.

For example, if you have a HyperLink control with NavigateUrl defined as ―page.aspx,‖

you can add the string ―?user=tony‖ to the HyperLink.NavigateUrl property so that the

full URL is ―page.aspx?user=tony.‖ Separate multiple query string values with amper

sands (&). For example, the URL ―page.aspx?user=tony&prefs=1&page=1252‖

passes three query string values to Page.aspx: user (with a value of ―tony‖), prefs (with

a value of 1), and page (with a value of 1252).

One of the biggest drawbacks to using query strings is that there are no tools built

into the .NET Framework to simplify the creation of query strings. You must manually

add query string values to every hyperlink that the user might click.

To read a query string value, access the Request.QueryStrings collection just like you

would access a cookie. To continue the previous example, the page.aspx page could

process the ―user‖ query string by accessing Request.QueryStrings("user") in Visual

Basic or Request.QueryStrings["user"] in C#. For example, the following code displays

values for the user, prefs, and page query strings in the Label1 control:

'VB

Label1.Text = "User: " + Server.HtmlEncode(Request.QueryString("user")) + _

 ", Prefs: " + Server.HtmlEncode(Request.QueryString("prefs")) + _

 ", Page: " + Server.HtmlEncode(Request.QueryString("page"))

//C#

Label1.Text = "User: " + Server.HtmlEncode(Request.QueryString["user"]) +

 ", Prefs: " + Server.HtmlEncode(Request.QueryString["prefs"]) +

 ", Page: " + Server.HtmlEncode(Request.QueryString["page"]);

512

Chapter 7 ASP.NET State Management

Security Alert You should always encode cookie or query string values using Server.HtmlEncode

before displaying the value in an HTML Web page to any user. Server.HtmlEncode replaces HTML

code with special characters that a Web browser cannot process. For example, Server.HtmlEncode

replaces a ―<‖ sign with ―<.‖ If you display the value in a browser, the user sees the ―<‖ sign, but

the browser does not process any HTML code or client-side scripts.

To provide extra protection, the runtime throws a System.Web.HttpRequestValidationException if it

detects HTML or client-side scripting in a query string. Therefore, you cannot pass HTML code in a

query string. This can be disabled by an administrator, however, so you should not rely on it for

protection.

Lab: Store State Management Data on the Client

In this lab, you use different client-side state management techniques to track the

number of pages a user opens.

� Exercise 1: Store Data in View State

In this exercise, you add custom values to the ViewState object and then test the

behavior when browsing to different pages.

1. Create a new ASP.NET Web site named ClientState in either C# or Visual Basic

using Visual Studio 2005.

2. In the blank project, on the Default.aspx page, add a label named Label1, a button

named Button1, and a hyperlink named HyperLink1. Set the HyperLink1.Navigate-

Url property to ―Default2.aspx.‖

3. Create a second Web form named Default2.aspx, add a label named Label1, a

button named Button1, and a hyperlink named HyperLink1. Set the

HyperLink1.NavigateUrl property to ―Default.aspx.‖

4. In the Page_Load method for both Default.aspx and Default2.aspx, add code to

store the current number of clicks in the ViewState object and display the clicks

in the Label control. The following code demonstrates how to do this:

'VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 If (ViewState("clicks") IsNot Nothing) Then

ViewState("clicks") = CInt(ViewState("clicks")) + 1

Else

ViewState("clicks") = 1

 End If

 Label1.Text = "ViewState clicks: " + CInt(ViewState("clicks")).ToString

End Sub

//C#

if (ViewState["clicks"] != null)

Lesson 1: Using Client-Side State Management

513

 ViewState["clicks"] = (int)ViewState["clicks"] + 1;

else

 ViewState["clicks"] = 1;

Label1.Text = " ViewState clicks: " + ((int)ViewState["clicks"]).ToString();

5. Build your Web site and visit the Default.aspx page. Click the button several

times and verify that the clicks counter increments.

6. Click the hyperlink to load the Default2.aspx page. Notice that the counter

returns to 1—the value stored in ViewState is lost because you opened a different

page.

7. Click the hyperlink to return to Default.aspx. Notice that the counter is again

reset. Switching between pages loses all ViewState information.

� Exercise 2: Store Data in a Hidden Field

In this exercise, you add a HiddenField control and use it to store state management

data.

1. Continue editing the project you created in the previous exercise. Alternatively,

you can open the completed Lesson 1, Exercise 1 project from the CD.

2. On the Default.aspx page, add a HiddenField control named HiddenField1.

3. In the Page_Load method for Default.aspx, add code to store the current number

of clicks in the HiddenField1 object and display the clicks in the Label control.

The following code demonstrates how to do this:

'VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 ' Store value in HiddenField

 Dim clicks As Integer

 Integer.TryParse(HiddenField1.Value, clicks)

 clicks += 1

 HiddenField1.Value = clicks.ToString

 Label1.Text = "HiddenField clicks: " + HiddenField1.Value

End Sub

//C#

int clicks;

int.TryParse(HiddenField1.Value, out clicks);

clicks++;

HiddenField1.Value = clicks.ToString();

 Label1.Text = "HiddenField clicks: " + HiddenField1.Value

514

Chapter 7 ASP.NET State Management

4. Notice that HiddenField.Value is a String, which requires converting data to and

from the String type. This makes it less convenient than other methods of storing

data.

5. Build your Web site and visit the Default.aspx page. Click the button several

times and verify that the clicks counter increments. If you browse to other pages,

the HiddenField value is lost.

� Exercise 3: Store Data in a Cookie

In this exercise, you use a cookie to track user clicks.

1. Continue editing the project you created in the previous exercise. Alternatively,

you can open the completed Lesson 1, Exercise 2 project from the CD.

2. In the Page_Load method for both Default.aspx and Default2.aspx, add code to

retrieve the current number of clicks from a cookie named ―clicks,‖ increment

the value, and store the new value in the same cookie. Display the clicks in the

Label control. The following code demonstrates how to do this:

'VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 ' Retrieve value from a cookie

 Dim cookieClicks As Integer

 If Not (Request.Cookies("clicks") Is Nothing) Then

cookieClicks = Integer.Parse(Request.Cookies("clicks").Value) + 1

Else

cookieClicks = 1

 End If

 ' Define the cookie for the next visit

 Response.Cookies("clicks").Value = cookieClicks.ToString

 Label1.Text = "Cookie clicks: " + cookieClicks.ToString

End Sub

//C#

// Retrieve value from a cookie

int cookieClicks;

if (Request.Cookies["clicks"] != null)

 cookieClicks = int.Parse(Request.Cookies["clicks"].Value) + 1;

else

 cookieClicks = 1;

// Define the cookie for the next visit

Response.Cookies["clicks"].Value = cookieClicks.ToString();

Label1.Text = "Cookie clicks: " + cookieClicks.ToString();

Lesson 1: Using Client-Side State Management

515

3. Build your Web site and visit the Default.aspx page. Click the button several

times and verify that the clicks counter increments.

4. Click the hyperlink to load Default2.aspx. Notice that the counter is not reset.

With cookies, you can browse to any page on the same Web site and access the

same value.

� Exercise 4: Store Data in a Query String

In this exercise, you use a query string to track user clicks.

1. Continue editing the project you created in the previous exercise. Alternatively,

you can open the completed Lesson 1, Exercise 3 project from the CD.

2. In the Page_Load method for both Default.aspx and Default2.aspx, add code to

retrieve the current number of clicks from a query string parameter named

―clicks,‖ increment the value, and store the new value in the Hyperlink1.Navigate-

Url. Display the clicks in the Label control. The following code demonstrates

how to do this:

'VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 ' Retrieve value from the query string

 Dim queryClicks As Integer

 If Not (Request.QueryString("clicks") Is Nothing) Then

queryClicks = Integer.Parse(Request.QueryString("clicks")) + 1

Else

queryClicks = 1

 End If

 ' Define the query string in the hyperlink

 HyperLink1.NavigateUrl += "?clicks=" + queryClicks.ToString

 Label1.Text = "Query clicks: " + queryClicks.ToString

End Sub

//C#

// Retrieve value from the query string

int queryClicks;

if (Request.QueryString["clicks"] != null)

 queryClicks = int.Parse(Request.QueryString["clicks"]) + 1;

else

 queryClicks = 1;

// Define the query string in the hyperlink

HyperLink1.NavigateUrl += "?clicks=" + queryClicks.ToString();

Label1.Text = "Query clicks: " + queryClicks.ToString();

516

Chapter 7 ASP.NET State Management

IMPORTANT Why does this example not use Server.HtmlEncode?

Earlier, this lesson warned you to always use Server.HtmlEncode to encode cookies or query

strings before displaying them in an HTML page. These exercises don’t seem to practice what

they preach, however. Instead, the exercises use strong typing to ensure there is no malicious

code contained in the values before they are displayed. By converting the values from strings

to integers and back to strings, there is no possibility that HTML code or client-side scripts

can be displayed. If the user inserts malicious code in a cookie or query string, the runtime

throws an exception when it attempts to parse the value, preventing the malicious code from

being displayed. However, you must always use Server.HtmlEncode before directly displaying

the string value of a cookie or query string.

3. Build your Web site, visit the Default.aspx page, and click the hyperlink to load

Default2.aspx. Notice that the counter is incremented.

4. Click the hyperlink several times to switch between pages. Notice that the URL

includes the number of clicks; this is visible to the user.

If the user bookmarks the link and returns to the page later, or even returns to the

same URL on a different computer, the current clicks counter is retained. With query

strings, you can e-mail or bookmark Web pages and have the state information stored

in the URL. However, you must include the query string in any link the user might

click on the page, or the information is lost.

Lesson 2: Using Server-Side State Management

Lesson 2: Using Server-Side State Management

519

ASP.NET provides two ways to share information between Web pages without send

ing the data to the client: application state and session state. Application state informa

tion is available to all pages, regardless of which user requests a page. Session state

information is available to all pages opened by a user during a single visit. Both appli

cation state and session state information are lost when the application restarts. To

persist user data between application restarts, you can store it using profile properties.

After this lesson, you will be able to:

■ Use application state to store information that should be accessible to all Web

pages.

■ Use session state to store information that should be accessible to all Web pages

opened by a user during a single visit to your Web site.

■ Describe the purpose of profile properties.

Estimated lesson time: 30 minutes

Application State

ASP.NET allows you to save values using application state, a global storage mecha

nism that is accessible from all pages in the Web application. Therefore, you can use

application state to store information that must be maintained between server round

trips and between requests for pages.

Application state is stored in the Application key/value dictionary (an instance of the

HttpApplicationState class). You can add application-specific information to this struc

ture to store it between page requests. Once you add your application-specific infor

mation to application state, the server manages it, and it is never exposed to the client.

Application state is a great place to store information that is not user-specific. By stor

ing it in the application state, all pages can access data from a single location in mem

ory, rather than keeping separate copies of the data.

IMPORTANT Choosing application or session state

You should not store user-specific information in application state. Instead, you should use session

state, as described later in this lesson. Any user might theoretically be able to access the Application

object, so storing user information in the Application object could expose you to security risks.

520

Chapter 7 ASP.NET State Management

Data stored in the Application object is not permanent and is lost any time the appli

cation is restarted. IIS regularly restarts ASP.NET applications to improve reliability,

and applications are restarted if the computer is restarted. To persist information,

read and write the values using application events, as described in the next section.

Responding to Application Events

ASP.NET provides three events that enable you to initialize Application variables (free

resources when the application shuts down) and respond to Application errors:

■ Application_Start Raised when the application starts. This is the perfect place to

initialize Application variables.

■ Application_End Raised when an application shuts down. Use this to free appli

cation resources and perform logging.

■ Application_Error Raised when an unhandled error occurs. Use this to perform

error logging.

To implement these events, add the Global.asax file to your project by following these

steps:

1. In Microsoft Visual Studio 2005, click Website, and then click Add New Item.

2. Click Global Application Class, and then click Add.

Visual Studio adds a default Global.asax f ile t hat has met hods for

Application_Start, Application_End, and Application_Error, as well as Session_Start

and Session_End (described later in this lesson). The following code demon

strates how to implement these services in the Global.asax file to keep track of

users in the Application[―UsersOnline‖] object:

'VB

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

 Application("UsersOnline") = 0

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

 Application.Lock()

 Application("UsersOnline") = CInt(Application("UsersOnline")) + 1

 Application.UnLock()

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

 Application.Lock()

 Application("UsersOnline") = CInt(Application("UsersOnline")) – 1

 Application.UnLock()

End Sub

//C#

Lesson 2: Using Server-Side State Management

521

void Application_Start(object sender, EventArgs e)

{

 // Code that runs on application startup

 Application["UsersOnline"] = 0;

}

void Session_Start(object sender, EventArgs e)

{

 // Code that runs when a new session is started

 Application.Lock();

 Application["UsersOnline"] = (int)Application["UsersOnline"] + 1;

 Application.UnLock();

}

void Session_End(object sender, EventArgs e)

{

 // Code that runs when a session ends.

 // Note: The Session_End event is raised only when the sessionstate mode

 // is set to InProc in the Web.config file. If session mode is set to StateServer

 // or SQLServer, the event is not raised.

 Application.Lock();

 Application["UsersOnline"] = (int)Application["UsersOnline"] - 1;

 Application.UnLock();

}

Reading and Writing Application State Data

You can read and write application state data using the Application object (an instance

of the HttpApplicationState class) just like you would read and write data to the View-

State object—as a collection. However, because multiple Web pages might be running

simultaneously, you must lock the Application object when making calculations and

performing updates, exactly as you need to lock a shared resource in a multi-threaded

application. For example, the following code locks the Application update and incre

ments a variable:

'VB

Application.Lock()

Application("PageRequestCount") = CInt(Application("PageRequestCount")) + 1

Application.UnLock()

//C#

Application.Lock();

Application["PageRequestCount"] = ((int)Application["PageRequestCount"])+1;

Application.UnLock();

If you don’t lock the Application object, it is possible for another page to change the

variable between the time that the process reads the current value and the time it

522

Chapter 7 ASP.NET State Management

writes the new value, causing a calculation to be lost. You do not need to lock the

Application object when initializing variables in Application_Start.

To read Application values, simply cast the value to the correct type. The following

example demonstrates how to read an Integer that has been stored in Application:

'VB

CInt(Application("PageRequestCount"))

//C#

(int)Application["PageRequestCount"]

Session State

ASP.NET allows you to save values using session state, a storage mechanism that is

accessible from all pages requested by a single Web browser session. Therefore, you

can use session state to store user-specific information that must be maintained

between server round trips and between requests for pages.

Session state is similar to application state, except that it is scoped to the current

browser session. If different users are using your application, each user session has a

different session state. In addition, if a user leaves your application and then returns

later after the session timeout period, session state information is lost and a new ses

sion is created for the user.

Session state is stored in the Session key/value dictionary (an instance of the HttpSes

sionState class). You can add session-specific information to this structure to store it

between page requests. Once you add your session-specific information to session

state, the server manages it, and it is never exposed to the client.

You can use session state to accomplish the following tasks:

■ Uniquely identify browser or client-device requests and map them to individual

session instances on the server. This allows you to track which pages a user saw

on your site during a specific visit.

■ Store session-specific data on the server for use across multiple browser or client-

device requests during the same session. This is perfect for storing shopping cart

information.

■ Raise appropriate session management events. In addition, you can write appli

cation code leveraging these events.

Once you add your application-specific information to session state, the server man

ages this object. Depending on which options you specify, session information can be

Lesson 2: Using Server-Side State Management

523

stored in cookies, on out-of-process servers, or on computers running Microsoft SQL

Server. Because session state can be centrally stored, it is perfect for storing data when

using multiple front-end Web servers.

Reading and Writing Session State Data

The following code sample demonstrates how to store the time the user last loaded a

page in a session variable and then later retrieve that value by casting it to the appro

priate type. While this performs a similar function to the ViewState example in Lesson

1, the Session object is available to any page, the count is incremented whether the

user submits a form or just clicks a link, and the count is stored on the server rather

than the client:

'VB

' Check if Session object exists, and display it if it does

If (Session("lastVisit") IsNot Nothing) Then

 Label1.Text = Session("lastVisit").ToString()

Else

 Label1.Text = "Session does not have last visit information."

End If

' Define the Session object for the next page view

Session("lastVisit") = DateTime.Now

//C#

// Check if Session object exists, and display it if it does

if (Session["lastVisit"] != null)

 Label1.Text = ((DateTime)Session["lastVisit"]).ToString();

else

 Label1.Text = "Session does not have last visit information.";

// Define the Session object for the next page view

Session["lastVisit"] = DateTime.Now;

To track a user’s session, ASP.NET uses the ASP.NET_SessionId cookie with a random

24-byte value. Values stored in Session must be serializable.

Disabling Session State

If you don’t use session state, you can improve performance by disabling session state

for the entire application by setting the sessionState mode property to Off in the

Web.config file, as the following example shows:

<configuration>

 <system.web>

 <sessionState mode="off"/>

 </system.web>

</configuration>

524

Chapter 7 ASP.NET State Management

If you want to disable session state for only a particular page of an application, set the

EnableSessionState page directive to False. You can also set the EnableSessionState page

directive to ReadOnly to provide read-only access to session variables. The following

code sample shows how to disable session state for a single page:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"

Inherits="_Default" EnableSessionState = "False"%>

Configuring Cookieless Session State

By default, session state uses cookies to track user sessions. This is the best choice for

the vast majority of applications. Almost all Web browsers support cookies, and those

that don’t are typically clients you don’t want to track session data for, such as search

engines or other robots.

However, you can enable a cookieless session state to have ASP.NET track sessions

using a query string in the URL. The session ID is embedded in the URL after the

slash that follows the application name and before any remaining file or virtual direc

tory identifier. For example, the following URL has been modified by ASP.NET to

include the unique session ID lit3py55t21z5v55vlm25s55:

http://www.example.com/s(lit3py55t21z5v55vlm25s55)/orderform.aspx

The following example shows a Web.config file that configures an ASP.NET applica

tion to use cookieless session identifiers.

<configuration>

 <system.web>

 <sessionState cookieless="true"

 regenerateExpiredSessionId="true" />

 </system.web>

</configuration>

Responding to Session Events

ASP.NET provides two events that help you manage user sessions:

■ Session_Start Raised when a new session begins. This is the perfect place to ini

tialize session variables.

■ Session_End Raised when a session is abandoned or expires. Use this to free per-

session resources.

http://www.example.com/s(lit3py55t21z5v55vlm25s55)/orderform.aspx

Lesson 2: Using Server-Side State Management

525

To implement these events, add the Global.asax file to your project and write code in

the appropriate event handler, as discussed in the section ―Responding to Application

Events,‖ earlier in this lesson.

Choosing a Session State Mode

ASP.NET session state supports several different storage options for session data:

■ InProc Stores session state in memory on the Web server. This is the default,

and it offers much better performance than using the ASP.NET state service or

storing state information in a database server. InProc is fine for simple applica

tions, but robust applications that use multiple Web servers or must persist ses

sion data between application restarts should use StateServer or SQLServer.

■ StateServer Stores session state in a service called the ASP.NET State Service.

This ensures that session state is preserved if the Web application is restarted

and also makes session state available to multiple Web servers in a Web farm.

ASP.NET State Service is included with any computer set up to run ASP.NET

Web applications; however, the service is set up to start manually by default.

Therefore, when configuring the ASP.NET State Service, you must set the startup

type to Automatic.

■ SQLServer Stores session state in a SQL Server database. This ensures that ses

sion state is preserved if the Web application is restarted and also makes session

state available to multiple Web servers in a Web farm. On the same hardware,

the ASP.NET State Service outperforms SQLServer. However, a SQL Server data

base offers more robust data integrity and reporting capabilities.

■ Custom Enables you to specify a custom storage provider. You also need to

implement the custom storage provider.

■ Off Disables session state. You should disable session state if you are not using

it to improve performance.

Configuring Session State Modes

You can specify which mode you want ASP.NET session state to use by assigning Ses

sionStateMode enumeration values to the mode attribute of the sessionState element in

your application’s Web.config file. Modes other than InProc and Off require additional

parameters, such as connection-string values. You can examine the currently selected

session state by accessing the value of the System.Web.SessionState.HttpSession-

State.Mode property.

526

Chapter 7 ASP.NET State Management

For example, the following settings in a Web.config file cause the session state to be

stored in a SQL server database identified by the specified connection string:

<configuration>

 <system.web>

 <sessionState mode="SQLServer"

cookieless="true "

regenerateExpiredSessionId="true "

timeout="30"

sqlConnectionString="Data Source=MySqlServer;Integrated Security=SSPI;"

stateNetworkTimeout="30"/>

 </system.web>

</configuration>

While you can configure session state for your application, that is typically the respon

sibility of systems administrators. For example, a systems administrator might ini

tially configure your Web application on a single server using the InProc mode. Later,

if the server gets too busy or requires redundancy, the systems administrator adds a

second Web server, configures the ASP.NET state service on a server, and modifies the

Web.config file to use the StateServer mode. Fortunately, the session state mode is

transparent to your application, so you won’t need to change your code. Besides con

figuring the Web.config file, you don’t need to change how your application deals

with session states to support different modes.

Quick Check

1. Which typically consumes more memory: application state or session state?

2. Which might not work if a user has disabled cookies in his or her Web

browser: application state or session state?

Quick Check Answers

1. Session state tends to use much more memory than application state,

because copies of all variables are stored for each user.

2. Session state, by default, won’t work if a Web browser that supports cook

ies has cookies disabled. Application state isn’t user-specific, though, and

doesn’t need to be tracked in cookies. Therefore, application state works

regardless.

Profile Properties

Lesson 2: Using Server-Side State Management

527

ASP.NET provides a feature called profile properties, which allows you to store user-

specific data. This feature is similar to session state, except that the profile data is not

lost when a user’s session expires. The profile-properties feature uses an ASP.NET pro

file, which is stored in a persistent format and associated with an individual user. The

ASP.NET profile allows you to easily manage user information without requiring you

to design your own database. In addition, the profile makes the user information

available using strongly typed classes that you can access from anywhere in your

application. You can store objects of any type in the profile.

NOTE .NET 2.0

Profile properties are new in ASP.NET version 2.0.

To use profile properties, you must configure a profile provider. ASP.NET includes

a SqlProfileProvider class that allows you to store profile data in a SQL database, but

you can also create your own profile provider class that stores profile data in a cus

tom format and to a custom storage mechanism, such as an XML file, or even to a

Web service.

Because data that is placed in profile properties is not stored in application memory, it

is preserved through Internet Information Services (IIS) restarts and worker-process

restarts without losing data. Additionally, profile properties can be persisted across

multiple processes, such as in Web farms or Web gardens.

MORE INFO Profile properties

For more information about profile properties, refer to Chapter 9, ―Customizing and Personalizing

a Web Application.‖

Lab: Store State Management Data on the Server

In this lab, you use different server-side state management techniques to track the

number of pages a user has opened.

� Exercise 1: Store Data in the Application Object

In this exercise, you add custom values to the Application object and then test the

behavior when browsing to different pages.

528

Chapter 7 ASP.NET State Management

1. Create a new ASP.NET Web site named ServerState in either C# or Visual Basic

using Visual Studio 2005.

2. In the blank project, on the Default.aspx page, add labels named Label1 and

Label2, and a hyperlink named HyperLink1. Set the HyperLink1.NavigateUrl

property to ―Default2.aspx.‖

3. Create a second Web form named Default2.aspx, add labels named Label1 and

Label2, and a hyperlink named HyperLink1. Set the HyperLink1.NavigateUrl

property to ―Default.aspx.‖

4. Add the Global.asax file to your project.

5. In the Global.asax file, in the Application_Start method, initialize an Integer

named ―clicks‖ in the Application object, as the following example shows:

'VB

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

 ' Code that runs on application startup

 Application("clicks") = 0

End Sub

//C#

void Application_Start(object sender, EventArgs e)

{

 // Code that runs on application startup

 Application["clicks"] = 0;

}

6. In the Page_Load method for both Default.aspx and Default2.aspx, add code to

increment the number of clicks in the Application object. Don’t forget to lock the

application object before updating the value. Then display the value in Label1.

The following code demonstrates how to do this:

'VB

Application.Lock()

Application("clicks") = CInt(Application("clicks")) + 1

Application.UnLock()

Label1.Text = "Application clicks: " + Application("clicks").ToString

//C#

Application.Lock();

Application["clicks"] = ((int)Application["clicks"]) + 1;

Application.UnLock();

Label1.Text = "Application clicks: " + Application["clicks"].ToString();

7. Build your Web site and visit the Default.aspx page. Click the hyperlink several

times to switch between pages and verify that the clicks counter increments.

Lesson 2: Using Server-Side State Management

529

8. From a different computer, open the same page. Notice that the click count

includes the clicks you made from the first computer because the Application

object is shared among all user sessions.

9. Restart your Web server and visit the same page again. Notice that the click count

is reset; the Application object is not persisted between application restarts.

� Exercise 2: Store Data in the Session Object

In this exercise, you add custom values to the Session object and then test the behavior

when browsing to different pages.

1. Continue editing the project you created in the previous exercise. Alternatively,

you can open the completed Lesson 2, Exercise 1 project from the CD.

2. In the Global.asax file, in the Session_Start method, initialize an Integer named

―clicks‖ in the Session object, as the following example shows:

'VB

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

 ' Code that runs when a new session is started

 Session("clicks") = 0

End Sub

//C#

void Session_Start(object sender, EventArgs e)

{

 // Code that runs when a new session is started

 Session["clicks"] = 0;

}

3. In the Page_Load method for both Default.aspx and Default2.aspx, add code to

increment the number of clicks in the Session object. Don’t forget to lock the

application object before updating the value. Then display the value in Label2.

The following code demonstrates how to do this:

'VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load

 Session("clicks") = CInt(Session("clicks")) + 1

 Label2.Text = "Session clicks: " + Session("clicks").ToString

End Sub

//C#

Session["clicks"] = ((int)Session["clicks"]) + 1;

Label2.Text = "Session clicks: " + Session["clicks"].ToString();

Notice that HiddenField.Value is a String, which requires converting data to and

from the String type. This makes it less convenient than other methods of storing

data.

530

Chapter 7 ASP.NET State Management

4. Build your Web site and visit the Default.aspx page. Click the hyperlink several

times to switch between pages and verify that both the Application and Session

clicks counters increment.

5. From a different computer, open the same page. Notice that the Application click

count includes the clicks you made from the first computer because the Applica

tion object is shared among all user sessions. However, the Session clicks counter

includes only clicks made from that computer.

6. Restart your Web server and visit the same page again. Notice that both click

counts are reset; the Application and Session objects are not persisted between

application restarts.

Chapter 9

Customizing and Personalizing
a Web Application

Modern Web applications are flexible, customizable, and personalized for individual

users. You’ve probably seen personalized consumer Web sites, such as portal and

news sites, where users can choose what types of content they want to see and even

control the layout of Web pages. However, business applications are also moving in

the direction of giving users the ability to customize how they view data and to see

more of the information they care about most.

This chapter discusses four ways to provide customizable, personalized Web applica

tions: master pages, themes, user profiles, and Web Parts.

Exam objectives in this chapter:

■ Implement a consistent page design by using master pages.

❑ Create a master page.

❑ Add a ContentPlaceHolder control to a master page.

❑ Specify default content for a ContentPlaceHolder.

❑ Reference external resources in a master page.

❑ Define the content of a particular page in a content page.

❑ Create a content page.

❑ Add content to a content page.

❑ Reference a master page member from a content page.

❑ Handle events when using master pages.

❑ Create a nested master page.

❑ Change master pages dynamically.

■ Customize a Web page by using themes and user profiles.

❑ Apply a theme declaratively.

❑ Apply a theme programmatically.

581

582

Chapter 9 Customizing and Personalizing a Web Application

❑ Apply a user-selected theme programmatically.

❑ Define custom themes.

❑ Define the appearance of a control by using skins.

❑ Enable users to personalize an application by using Web Parts.

❑ Track and store user-specific information by using user profiles.

❑ Personalize a Web page by dynamically adding or removing child controls

in a Placeholder control at run time.

■ Implement Web Parts in a Web application.

❑ Track and coordinate all Web Parts controls on a page by adding a Web-

PartManager control.

❑ Connect Web Parts to each other by using connection objects.

❑ Divide a page that uses Web Parts into zones by using WebPartZones.

❑ Present a list of available Web Parts controls to users by using CatalogPart

controls.

❑ Enable users to edit and personalize Web Parts controls on a page by using

EditorPart controls.

Lessons in this chapter:

■ Lesson 1: Using Master Pages . 584

■ Lesson 2: Using Themes and User Profiles . 602

■ Lesson 3: Using Web Parts . 621

Before You Begin
To complete the lessons in this chapter, you should be familiar with Microsoft Visual

Basic or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed with

SQL Server 2005 Express Edition and Internet Information Services (IIS).

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

Real World

Tony Northrup

Before You Begin

583

In the early ’90s, having any Web site at all was an accomplishment, and all it

took to impress people was an animated GIF. Near the mid-1990s, developers

started adding simple scripting to create static Web sites that incorporated a few

dynamic Web components, such as e-mail forms.

Over time, the Web development community has continued to raise the bar.

Today, almost all Web pages incorporate some dynamic content. Almost all e-

commerce and other business Web sites enable users to identify themselves to

get permissions to view personalized versions of the Web site and to maintain

their own accounts.

Creating a large personalized Web site like this would have been next-to

impossible with the Perl scripts most of us used in the early to mid-1990s.

Today, with the .NET Framework, you can build dynamic, personalized Web

sites with very little code. The Web sites are not only easier to create, but are

more secure, reliable, and manageable. That means that, unlike some of the

Perl scripts I wrote in the ’90s, I probably won’t have script kiddies hacking my

site just for the fun of it.

584

Chapter 9 Customizing and Personalizing a Web Application

Lesson 1: Using Master Pages

Many developers tend to focus primarily on functionality, not aesthetics. As a result,

complex Web applications with dozens of pages can be both ugly and inconsistent.

After all, if you discover a better way to provide site navigation while developing the

thirteenth Web page in an application, you might not take the time to go back and

adjust the first twelve pages.

ASP.NET master pages solve this problem by allowing you to create a consistent layout

for all pages in your application. A single master page defines the look, feel, and stan

dard behavior that you want for all pages (or a group of pages) in your application.

You can then create individual content pages that contain just the information you

want to fit into the template provided by the master page. When users request the

content pages, ASP.NET merges the content with the master page.

This lesson describes how to create and use master pages and content pages.

Real World

Tony Northrup

All Web sites require consistency. Before master pages were available, I used to

create custom controls for every component that would be repeated throughout

a Web site, including the logo, the navigation bar, and the page footer. This way,

if I needed to change an aspect of one of the common components, I could make

the change in one place and have it reflected throughout the site.

That worked great unless I wanted to add or remove a component, or change the

layout of the components. Then I’d have to go into every single Web page and

make the change. After that, I’d have to test every Web page to make sure I hadn’t

made any mistakes.

Now master pages allow me to make centralized changes to the entire site by

editing one file. It speeds up the development of content pages, too, because I

don’t have to worry about copying and pasting the structure for the shared

controls.

After this lesson, you will be able to:

Lesson 1: Using Master Pages

585

■ Explain the purpose of master and content pages.

■ Describe the process of creating master and content pages.

■ Use different techniques for attaching content to a master page.

■ Reference controls and properties on a master page from a content page.

■ Explain how event handling works in master pages.

■ Create nested master pages.

■ Programmatically switch between master pages to provide user-selected templates.

Estimated lesson time: 45 minutes

Overview of Master and Content Pages

Master pages consist of two separate parts:

■ Master page An ASP.NET file with a .master file extension. A master page con

tains a layout that includes text, HTML, and server controls. Instead of an ―@

Page‖ directive, it contains an ―@ Master‖ directive. The master page contains all

top-level HTML elements for a page, including <html>, <head>, and <form>. A

master page typically includes the page structure (usually an HTML table), com

pany name and logo, and site navigation. To enable pages to insert content, a

master page contains one or more ContentPlaceHolder controls. A master page

inherits from the MasterPage class.

■ Content page A content page defines the ContentPlaceHolder controls in a master

page, essentially filling in the blanks. A content page is a standard .aspx file and

is bound to the master page using the MasterPageFile attribute in the ―@ Page‖

directive.

Figure 9-1 illustrates how master pages and content pages work together.

586

Chapter 9 Customizing and Personalizing a Web Application

A.master

Contoso, Inc.

A.aspx

Products

Services

About Us

Contact Us

ContentPlaceHolder: Main

ContentPlaceHolder: Main

Hi, welcome to the Web site!

Type your database query here:

ContentPlaceHolder: Footer

Products

Services

About Us

Contact Us

ContentPlaceHolder: Footer Copyright 2006

Contoso, Inc.

ContentPlaceHolder: Main

Hi, welcome to the Web site!

Type your database query here:

ContentPlaceHolder: Footer Copyright 2006

Figure 9-1 Master pages define a structure, and content pages fill in the blanks.

The following demonstrates a master page with two ContentPlaceHolder controls:

'VB

<% @ Master Language="VB" %>

<html>

<head runat="server">

 <title>Master page title</title>

</head>

<body>

 <form id="form1" runat="server">

 <table>

 <tr>

<td><asp:contentplaceholder id="Main" runat="server" /></td>

<td><asp:contentplaceholder id="Footer" runat="server" /></td>

 </tr>

 </table>

 </form>

</body>

</html>

//C#

<%@ Master Language="C#" %>

<html>

<head runat="server">

 <title>Master page title</title>

</head>

<body>

 <form id="form1" runat="server">

 <table>

 <tr>

Lesson 1: Using Master Pages

587

<td><asp:contentplaceholder id="Main" runat="server" /></td>

<td><asp:contentplaceholder id="Footer" runat="server" /></td>

 </tr>

 </table>

 </form>

</body>

</html>

The following demonstrates a content page. Note that all text and controls must be

within a Content control, or the page generates an error. Otherwise, the page behaves

exactly like a standard ASP.NET page. Note the ―@ Page‖ directive and MasterPageFile

attribute.

'VB

<% @ Page Language="VB" MasterPageFile="~/Master.master" Title="Content Page 1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" Runat="Server">

 Main content.

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="Footer" Runat="Server" >

 Footer content.

</asp:content>

//C#

<% @ Page Language="C#" MasterPageFile="~/Master.master" Title="Content Page 1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" Runat="Server">

 Main content.

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="Footer" Runat="Server" >

 Footer content.

</asp:content>

Master pages provide functionality that developers have traditionally created by:

■ Copying and pasting existing code, text, and control elements repeatedly.

■ Using framesets.

■ Using include files for common elements.

■ Using ASP.NET user controls.

588

Chapter 9 Customizing and Personalizing a Web Application

Advantages of master pages include the following:

■ They allow you to centralize the common functionality of your pages so that you

can make updates in just one place.

■ They make it easy to create one set of controls and code and apply the results to

a set of pages. For example, you can use controls on the master page to create a

menu that applies to all pages.

■ They give you fine-grained control over the layout of the final pages by allowing

you to control how the placeholder controls are rendered.

■ They provide object models that allow you to customize the master pages from

individual content pages.

At run time, master pages are handled in the following sequence:

1. A user requests a page by typing the URL of the content page.

2. When the page is fetched, the ―@ Page‖ directive is read. If the directive refer

ences a master page, the master page is read as well. If this is the first time the

pages have been requested, both pages are compiled.

3. The master page with the updated content is merged into the control tree of the

content page.

4. The content of individual Content controls is merged into the corresponding

ContentPlaceHolder control in the master page.

5. The resulting merged page is rendered to the browser as a single page.

In general, the master page structure has no effect on how you construct your pages

or program them. However, in some cases, if you set a page-wide property on the

master page, it can affect the behavior of the content page, because the master page

is the closest parent for the controls on the page. For example, if you set the Enable-

ViewState property on the content page to true but set the same property to false in

the master page, view state is effectively disabled because the setting on the master

page takes priority.

The Process of Creating Master and Content Pages

At a high level, you will follow this process to create master and content pages with

Visual Studio 2005:

1. Add a master page to your Web site with a .master extension.

Lesson 1: Using Master Pages

589

2. To the master page, add layout tables, graphics, copyright information, and

other content that should appear on multiple pages. Then add one or more Con

tentPlaceHolder controls where pages can add unique content.

3. Add a Web form to the Web site with an .aspx extension. Select the Select Master

Page check box when creating the page and select your master page.

4. To the content page, add text, graphics, and controls to each Content control to

map to the ContentPlaceHolder controls in the master page.

At the hands-on level, creating content is just as straightforward. In fact, you can cre

ate master and content pages without writing a single line of code. Exercise 1 of this

lesson’s lab walks you through the process step by step.

Quick Check

1. Which control must you have on a master page?

2. Which control must you have on a content page?

Quick Check Answers

1. You must have the ContentPlaceHolder control on a master page.

2. You must have the Content control, which is inserted into a ContentPlace-

Holder control, on a content page.

Techniques for Attaching Content Pages to a Master Page

You can attach content pages to a master page at three levels:

■ At the page level You can use a page directive in each content page to bind it to

a master page, as in the following code example:

'VB

<%@ Page Language="VB" MasterPageFile="MySite.Master" %>

//C#

<%@ Page Language="C#" MasterPageFile="MySite.Master" %>

■ At the application level By making a setting in the <pages> element of the appli

cation’s configuration file (Web.config), you can specify that all ASP.NET pages

(.aspx files) in the application automatically bind to a master page. If you use this

strategy, all ASP.NET pages in the application that have Content controls are

merged with the specified master page. (If an ASP.NET page does not contain

590

Chapter 9 Customizing and Personalizing a Web Application

Content controls, the master page is not applied.) The element might look like

the following:

<pages masterPageFile="MySite.Master" />

■ At the folder level This strategy is like binding at the application level, except

that you make the setting in a Web.config file in one folder only. The master-page

bindings then apply to the ASP.NET pages in that folder.

Referencing Master Page Properties and Controls from Content Pages

Ideally, content pages depend upon the master page to define any application-specific

settings. For example, if your master page has your company name in the upper-left

corner, content pages read the company name from a master page property rather

than having the company name hard-coded into every content page.

To reference master page properties from a content page, follow this process:

1. Create the property in the master page.

2. Add the ―@ MasterType‖ declaration to the .aspx content page.

3. Reference the property from the content page using Master.Property_Name.

The sections that follow describe this process in more detail.

Creating a Property in the Master Page

Content pages can reference any public property declared in the master page class.

For example, in the following code sample from a master page code-behind file, con

tent pages can access both the address and the company name:

'VB

Public Address As String = "123 Anywhere"

Public Property CompanyName() As String

Get

Return CType(ViewState("CompanyName"), String)

 End Get

 Set(ByVal value As String)

ViewState("CompanyName") = value

 End Set

End Property

//C#

public String Address = "123 Anywhere";

public String CompanyName

{

}

 get { return (String)ViewState["companyName"]; }

 set { ViewState["companyName"] = value; }

Lesson 1: Using Master Pages

591

NOTE Avoid hard-coding information

This example uses hard-coded variables to illustrate how to declare properties. Typically, properties

such as company name and address should be defined in the application configuration.

Adding an ―@ MasterType‖ Declaration in a Content Page

Before you can reference master properties in a content page, you must add the ―@

MasterType‖ declaration to the .aspx content page below the ―@ Page‖ declaration, as

the following demonstrates:

'VB

<%@ Page Language="VB" MasterPageFile="~/Master1.Master" CodeFile="Home.aspx.vb"

Inherits="Home" Title="Contoso Home Page" %>

<%@ MasterType virtualpath="~/Master1.master" %>

//C#

<%@ Page Language="C#" MasterPageFile="~/Master1.Master" CodeFile="Home.aspx.cs"

Inherits="Home" Title="Contoso Home Page" %>

<%@ MasterType virtualpath="~/Master1.master" %>

You are now ready to reference master properties. However, the Visual Studio 2005

development environment might not recognize the property names until you save the

Web page.

If you are creating multiple master pages that might be referenced by the same set of

content pages, you should derive all master pages from a single base class. Then spec

ify the base class name in the ―@ MasterType‖ declaration. This enables the content

page to reference the same properties regardless of which master page is being used.

Referencing Master Properties

Once you add the ―@ MasterType‖ declaration, you can reference properties in the

master page using the Master class. For example, the following code defines a Label

control named CompanyName using the CompanyName public property defined in the

master page:

'VB

CompanyName.Text = Master.CompanyName

//C#

CompanyName.Text = Master.CompanyName;

592

Chapter 9 Customizing and Personalizing a Web Application

If you later change the master page associated with a content page, make sure you

implement the same public properties to ensure the content pages continue to func

tion correctly.

Referencing Controls in the Master Page

Besides properties, you can also reference and update controls in the master page

from a content page by calling the Master.FindControl method and supplying the con

trol name. Master.FindControl returns a Control object, which you need to cast to the

correct type to create a new object. You can then read or update the object as if it were

local.

The following code (which belongs in the Page_Load method of the content page)

demonstrates this by updating a Label control in the master page named Brand:

'VB

Dim _Brand As Label = CType(Master.FindControl("Brand"), Label)

_Brand.Text = "Fabrikam"

//C#

Label _Brand = (Label)Master.FindControl("Brand");

_Brand.Text = "Fabrikam";

Use this technique any time a content page needs to customize information in a mas

ter page.

Handling Events When Working with Master Pages

Responding to events is only slightly more complicated when using master pages

than when using standard ASP.NET pages, because events can occur in either the

master page or a content page. Typically, however, responding to these events is

intuitive.

Respond to control events, such as Button_Click, in the page containing the control. If

the control is in the master page, add the code to respond to the control event in the

master page. If the control is in the content page, add the code to respond to the con

trol event in the control page.

When responding to page events, the sequence of events in the master and content

page can be significant. The following is the sequence in which events occur when a

master page is merged with a content page:

1. Master page controls Init event.

2. Content controls Init event.

3. Master page Init event.

4. Content page Init event.

5. Content page Load event.

6. Master page Load event.

7. Content controls Load event.

8. Content page PreRender event.

9. Master page PreRender event.

10. Master page controls PreRender event.

11. Content controls PreRender event.

Creating a Nested Master Page

Lesson 1: Using Master Pages

593

Master pages can be nested, with one master page referencing another as its master.

Nested master pages allow you to create componentized master pages. For example,

a large site might contain an overall master page that defines the look of the site. Dif

ferent site content partners can then define their own child master pages that refer

ence the site master and that, in turn, define the look for that partner’s content.

A child master page has the file name extension .master, as with any master page.

However, the child master page also has a master attribute in the ―@ Master‖ declara

tion. The following example demonstrates a child master page whose parent master

page is named ―Parent.master‖:

'VB

<%@ Master Language="VB" master="Parent.master"%>

<asp:Content id="Content1" ContentPlaceholderID="MainContent" runat="server">

<asp:panel runat="server" id="panelMain" backcolor="lightyellow">

<h2>Child master</h2>

 <asp:panel runat="server" id="panel1" backcolor="lightblue">

<p>This is childmaster content.</p>

<asp:ContentPlaceHolder ID="Content1" runat="server" />

 </asp:panel>

 <asp:panel runat="server" id="panel2" backcolor="pink">

 <p>This is childmaster content.</p>

 <asp:ContentPlaceHolder ID="Content2" runat="server" />

 </asp:panel>

</asp:panel>

</asp:Content>

//C#

<%@ Master Language="C#" master="Parent.master"%>

<asp:Content id="Content1" ContentPlaceholderID="MainContent" runat="server">

594

Chapter 9 Customizing and Personalizing a Web Application

<asp:panel runat="server" id="panelMain" backcolor="lightyellow">

<h2>Child master</h2>

 <asp:panel runat="server" id="panel1" backcolor="lightblue">

<p>This is child master content.</p>

<asp:ContentPlaceHolder ID="Content1" runat="server" />

 </asp:panel>

 <asp:panel runat="server" id="panel2" backcolor="pink">

 <p>This is child master content.</p>

 <asp:ContentPlaceHolder ID="Content2" runat="server" />

 </asp:panel>

</asp:panel>

</asp:Content>

The child master page typically contains content controls that are mapped to content

placeholders on the parent master page. In this respect, the child master page is laid

out like any content page. However, the child master page also has content placehold

ers of its own to display content supplied by its own child pages.

Dynamically Changing Master Pages

You define the master page in a content page’s ―@ Page‖ declaration, but that doesn’t

mean you can’t switch to a different master page programmatically. Changing master

pages allows you to provide different templates for different users. For example, you

might give users a choice of different colors and styles. You could also use different

master pages to format data for different browsers or different mobile devices.

MORE INFO Mobile devices

For more information about creating Web pages for mobile devices, read Chapter 12, ―Creating

ASP.NET Mobile Web Applications.‖

To dynamically change master pages, follow these high-level steps:

1. Create two or more master pages with the same ContentPlaceHolder controls and

public properties. Typically, you create one master page, copy it to create the sec

ond master page, and make any modifications necessary. Note that, from this

point forward, you must make any changes to the ContentPlaceHolder controls or

public properties to all master pages to ensure compatibility.

2. Optionally, provide a way for users to switch between master pages. If the master

page should be the user’s choice (for example, if color and layout are the primary

differences), add links to your master pages to enable users to switch between

pages. You need to define the current master page within the content page,

however, so store the setting in the Session variable or in another object that is

Lesson 1: Using Master Pages

595

accessible to both the master and content pages. For example, this code can be

called from a link or button on the master page to set a Session variable to the

name of a different master page. After you define the master page within the

content page, reload the page:

'VB

Session("masterpage") = "Master2.master"

Response.Redirect(Request.Url.ToString)

//C#

Session["masterpage"] = "Master2.master";

Response.Redirect(Request.Url.ToString());

3. Define the master page in the content page’s Page_PreInit method. Page_PreInit is

the last opportunity you have to override the default master page setting,

because later handlers (such as Page_Init) reference the master page. For exam

ple, this code defines the master page based on the Session object:

'VB

Sub Page_PreInit(ByVal sender As Object, ByVal e As EventArgs)

 If Not (Session("masterpage") Is Nothing) Then

MasterPageFile = CType(Session("masterpage"), String)

 End If

End Sub

//C#

void Page_PreInit(Object sender, EventArgs e)

{

 if (Session["masterpage"] != null)

MasterPageFile = (String)Session["masterpage"];

}

Exercise 2 in this lesson’s lab walks you through this process step by step.

Lab: Using Master and Child Pages

In this lab, you create multiple master and child pages.

� Exercise 1: Create master pages and a child page

In this exercise, you create a new ASP.NET Web site with two master pages and a child

page.

1. Create a new ASP.NET Web site named MasterContent in either C# or Visual

Basic using Visual Studio 2005.

2. Add a new Master Page to your Web site named Professional.master.

596

Chapter 9 Customizing and Personalizing a Web Application

3. In the design view for Professional.master, add a Label named CompanyName

with a large font and the phrase Contoso, Inc. Then add a Label named Wel

come with the phrase Welcome, visitor! Figure 9-2 demonstrates this.

Figure 9-2 Create a sample master page.

4. Repeat the previous step to create an identical page named Colorful.master. Add

Label controls with the same names. Then set the page background color and

the font colors to your favorite colors.

5. Add a new Web Form to your Web site named Home.aspx. In the Add New Item

dialog box, select the Select Master Page check box. In the Select A Master Page

dialog box, select Professional.master.

6. To Home.aspx, add a TextBox named UserName, a DropDownList named Tem

plate, and a Button named Submit. Add two items to the DropDownList: Profes

sional and Colorful. Optionally, add labels to improve the appearance of the

form. Figure 9-3 demonstrates this.

Figure 9-3 Create a sample content page.

Lesson 1: Using Master Pages

597

7. Build your project and open the resulting Home.aspx page in a browser. Verify

that it displays correctly, as shown in Figure 9-4. None of the controls do any

thing yet, however.

Figure 9-4 Verifying that the content page displays within the default master page.

As this exercise demonstrated, master and content pages can be created in just a few

minutes without writing any code.

� Exercise 2: Modify Master Page Properties and Switch Master Pages

In this exercise, you add functionality to a child page to change controls on a master

page and to switch between two different master pages.

1. Continue working with the project you created in Exercise 1.

2. Double-click the Submit button to open the button’s event handler.

3. In the Submit_Click method, add code that determines whether the user pro

vided a value in the UserName text box. If the user did, use the name he or she

typed to define a Session variable named UserName, and change the welcome

message in the master page to read Welcome, user_name! The following code

demonstrates this:

'VB

If Not (UserName.Text Is Nothing) Then

 Session("UserName") = UserName.Text

 Dim _Welcome As Label = CType(Master.FindControl("Welcome"), Label)

 _Welcome.Text = "Welcome, " + UserName.Text + "!"

End If

//C#

if (UserName.Text != null)

{

 Session["UserName"] = UserName.Text;

 Label _Welcome = (Label)Master.FindControl("Welcome");

 _Welcome.Text = "Welcome, " + Session["UserName"] + "!";

}

4. Build your project and open the Home.aspx page. In the UserName text box, type

your name, and then click the Submit button. Verify that the page successfully

changes the UserName label in the master page. While this works now, it only

598

Chapter 9 Customizing and Personalizing a Web Application

works within the Home.aspx content page. If a user loads a different page, the

welcome message reverts to ―Welcome, visitor!‖

5. If you are using Visual Basic, edit the Home.aspx ―@ Page‖ declaration to set the

AutoEventWireup attribute to true. This is set to true by default in C#. Then create

a Page_Load method in the code-behind file. This demonstrates the proper ―@

Page‖ declaration:

<%@ Page Language="VB" MasterPageFile="~/Professional.master" AutoEventWireup="true"

CodeFile="Home.aspx.vb" Inherits="Home" title="Untitled Page" %>

6. Within the Page_Load method, check to see if there is a Session variable named

UserName. If there is, change the welcome message in the master page to read

Welcome, user_name! The following code demonstrates this:

'VB

Protected Sub Page_PreInit()

 If Not (Session("UserName") Is Nothing) Then

Dim _Welcome As Label = CType(Master.FindControl("Welcome"), Label)

_Welcome.Text = "Welcome, " + Session("UserName") + "!"

 End If

End Sub

//C#

protected void Page_PreInit()

{

 if (Session["UserName"] != null)

{

Label _Welcome = (Label)Master.FindControl("Welcome");

_Welcome.Text = "Welcome, " + Session["UserName"] + "!";

}

}

7. Build your application, and then open the Home.aspx page. In the UserName

text box, type your name, and then click the Submit button. The page should

change to show the name you typed. Browse to a different page, and then return

to Home.aspx to verify that the user name is being retrieved from the Session

object, and not ViewState.

8. In the Home.aspx design view, double-click the Template drop-down list. In the

event handler, define the Template variable of the Session object using the

selected value. The following code demonstrates this:

'VB

Session("Template") = Template.SelectedValue

//C#

Session["Template"] = Template.SelectedValue;

Lesson 1: Using Master Pages

599

9. Create a Page_PreInit method. In the Page_PreInit method, check to see if there is

a Session variable named Template. If there is, use it to change the MasterPageFile

object to the selected template’s filename. The following code demonstrates this:

'VB

If Not (Session("Template") Is Nothing) Then

 MasterPageFile = CType(Session("Template"), String) + ".master"

End If

//C#

if (Session["Template"] != null)

 MasterPageFile = (String)Session["Template"] + ".master";

10. Build your application, and then open the Home.aspx page. Switch to the Color

ful template, and then click Submit. Then reload the page. Notice that the page

does not change templates until after you reload it. This happens because the

Template_SelectedIndexChanged method runs after the Page_PreInit method.

Therefore, the Page_PreInit method cannot detect the Session("Template") (in

Visual Basic) or the Session["Template"] (in C#) variable until the second time you

load the page.

As you can see, using the master page model doesn’t prevent you from accessing con

trols contained in the master page from the content page.

602

Chapter 9 Customizing and Personalizing a Web Application

Lesson 2: Using Themes and User Profiles

An ASP.NET theme is a collection of properties that define the appearance of pages

and controls in your Web site. A theme can include skin files, which define property

settings for ASP.NET Web server controls, and cascading style sheet files (.css files)

and graphics. By applying a theme, you can give the pages in your Web site a consis

tent appearance.

This lesson describes how to create themes and store information in user profiles.

Real World

Tony Northrup

At the time of this writing, my personal Web site is a mess. I made it years ago,

when ASP.NET was brand new and themes weren’t yet available.

Here’s the thing: I hate the Times New Roman default font. I much prefer sans-

serif fonts. So, I manually set the font for every control. But, because I was doing

it manually, I overlooked some controls. Later, when I added new controls, I for

got to set the font correctly every time. So, my fonts are inconsistent.

That’s one reason why themes are great—they save you time and they let you

define your own defaults.

After this lesson, you will be able to:

■ Use themes to specify attributes for controls on a single page or an entire Web site.

■ Use user profiles to track information about a user between visits.

■ Dynamically add controls to a specific location on a Web page.

Estimated lesson time: 45 minutes

Using Themes

Typically, all the Web pages in a Web site have a set of properties in common, includ

ing background color, font size and style, and foreground color. You can manually set

the properties for every control on every page, but that isn’t a good use of your time,

and you’ll probably overlook some settings.

Lesson 2: Using Themes and User Profiles

603

Themes save you time and improve the consistency of a site by applying a common set

of properties across all pages in a Web site or on a Web server to define the look of

pages and controls. Basically, themes change the default appearance of controls.

Themes can be made up of a set of elements:

■ Skins Files with .skin extensions that contain property settings for buttons,

labels, text boxes, and other controls. Skin files resemble control markups, but

contain only the properties you want to define as part of the theme.

■ Cascading style sheets (CSS) Files with .css extensions that ASP.NET automati

cally applies to all pages.

■ Images and other resources You can add images (such as a corporate logo) or

other resources to themes as necessary.

However, many themes simply have skin files to set default attributes for controls. The

sections that follow describe different ways you can use themes and show you how to

implement them.

Applying Control Attributes for Themes with ASP.NET

When you use themes, attributes for controls could be defined in a standard or style

sheet theme defined in the ―@ Page‖ directive, in a standard or style sheet theme

defined in the Web.config file, or in the control properties themselves. Within

ASP.NET, attributes and elements take precedence in the following order:

1. Theme attribute in the ―@ Page‖ directive.

2. <pages Theme="themeName"> element in the Web.config file.

3. Local control attributes.

4. StyleSheetTheme attribute in the ―@ Page‖ directive.

5. <pages StyleSheetTheme="themeName"> element in the Web.config file.

In other words, if you specify a Theme attribute in the ―@ Page‖ directive, settings in

the theme override any settings you’ve specified for controls on the page. However, by

simply changing the Theme attribute to StyleSheetTheme, the control-specific settings

take precedent over the theme settings.

For example, this directive applies a theme that would override control properties. In

other words, if SampleTheme specifies that Label controls use a red font, but you spec

ify a blue font for a Label control, the Labels appear with red font:

<%@ Page Theme="SampleTheme" %>

http://ASP.NET

604

Chapter 9 Customizing and Personalizing a Web Application

This directive applies a style sheet theme. Any changes you make to local control prop

erties override settings in the style sheet theme. Therefore, continuing the previous

example, a blue Label control appears blue even if SampleTheme specifies that Label

controls are red:

<%@ Page StyleSheetTheme="SampleTheme" %>

However, Label controls that do not have a color specified appear as red. In this

regard, if you choose to use a style sheet theme, your theme’s properties are overrid

den by anything declared locally within the page. Similarly, if you use a standard

theme (sometimes referred to as a ―customization theme‖ in Microsoft Developer Net

work [MSDN] documentation), your theme’s properties override anything within the

local page and anything within any style sheet theme in use.

You can also disable themes for a specific page by setting the EnableTheming attribute

of the ―@ Page‖ directive to false:

<%@ Page EnableTheming="false" %>

Similarly, to disable themes for a specific control, set the control’s EnableTheming

property to false.

Creating a Theme

It takes only a few minutes to create a theme. If you plan to use the theme only within

a single Web application, create an application theme within your application folder.

If you need to access the theme from multiple Web applications, you can create a glo

bal theme instead. Once you have created your theme folders, add skin files and cas

cading style sheets. The sections that follow describe how to do this.

Creating an Application Theme If you only need to access a theme from within a sin

gle Web application, you should create the theme within your Web application fold

ers. To create an application theme, follow these steps:

1. Create an App_Themes folder in your Web application. In Visual Studio, right-

click your Web site in the Solution Explorer, select Add ASP.NET Folder, and

then select Theme.

2. Within your App_Themes folder, create a subfolder with your theme name. For

example, you could name the theme ―RedTheme‖ or ―BlueTheme.‖ You use this

name for both the folder name and when referencing the theme in page declara

tions and configuration files. You can have multiple themes for a Web applica

tion, as Figure 9-5 illustrates.

Lesson 2: Using Themes and User Profiles

Figure 9-5 Create multiple themes by adding subfolders to the App_Themes folder.

605

3. Within your theme subfolder, add skin files, style sheets, and images that make

up your theme.

4. In each page that you want to apply the skin to, add the Theme or

StyleSheetTheme attribute to the ―@ Page‖ directive. To apply the theme to an

entire Web application, add the <pages Theme="themeName"> element or the

<pages StyleSheetTheme="themeName"> element to the Web.config file.

Creating a Global Theme A global theme is available to all the Web sites on your Web

server. To create a global theme, follow these steps:

Create a Themes folder using the path iisdefaultroot\aspnet_client\system_web\ver

sion\Themes. For example, if the default Web root folder is in C:\Inetpub\wwwroot\

folder on the Web server and the version of the .NET Framework is 2.0.50727, the

new Themes folder is C:\Inetpub\wwwroot\aspnet_client\system_web\2_0_50727

\Themes.

NOTE Using global themes with file-based Web site development

If you are creating a file-based Web site in your development environment, create the themes fold

ers in the %windows%\Microsoft.NET\Framework\<version>\ASP.NETClientFiles\Themes folder.

1. Within your Themes folder, create a subfolder with your theme name.

2. Within your theme subfolder, add skin files, style sheets, and images that make up

your theme. You can’t do this directly with the Visual Web Developer; however,

you can create a theme for a Web application and then move it to the global folder.

3. In each page that you want to apply the skin to, add the Theme or StyleSheet-

Theme attribute to the ―@ Page‖ directive. To apply the theme to an entire Web

application, add the <pages Theme="themeName"> element or the <pages

StyleSheetTheme="themeName"> to the Web.config file. The Visual Web Devel

oper does not recognize the global theme name; however, ASP.NET processes it

properly when you retrieve the page from IIS.

606

Chapter 9 Customizing and Personalizing a Web Application

Quick Check

1. In which folder should you place themes for an application?

2. In which folder should you place global themes?

Quick Check Answers

1. Place themes for an application in the App_Themes folder.

2. Place global themes in the iisdefaultroot\aspnet_client\system_web\version

\Themes folder.

Creating a Skin File Skin files are the most common theme components; they serve

to define default settings for control appearance attributes. To create a skin file, create

a .skin file in your theme folder with control and attribute definitions. A .skin file can

contain several skins for multiple control types, or you can create a separate .skin file

for each control.

There are two types of control skins:

■ Default skins A default skin automatically applies to all controls of the same

type when a theme is applied to a page. A control skin is a default skin if it does

not have a SkinID attribute. For example, if you create a default skin for a Calen

dar control, the control skin applies to all Calendar controls on pages that use the

theme. Default skins are matched exactly by control type, so that a Button control

skin applies to all Button controls, but not to LinkButton controls or to controls

that derive from the Button object.

■ Named skins A named skin is a control skin with a SkinID property set. Named

skins do not automatically apply to controls by type. Instead, you explicitly

apply a named skin to a control by setting the control’s SkinID property. Creat

ing named skins allows you to set different skins for different instances of the

same control in an application.

The following is a control skin for a Button control that defines the foreground and

background colors:

<asp:Button runat="server"

 BackColor="lightblue"

 ForeColor="black" />

Lesson 2: Using Themes and User Profiles

Similarly, you can define other attributes, including font attributes:

<asp:Button runat="server"

 BackColor="Red"

 ForeColor="White"

 Font-Name="Arial"

 Font-Size="9px" />

607

Control skins are exactly like ASP.NET source code for the controls; however, skins

never define the control IDs. The easiest way to create a skin file is to follow these

steps:

1. Add controls to an .aspx file.

2. Specify the appearance of the controls using the Visual Studio designer.

3. Create a new skin file. To do this with Visual Studio 2005, right-click the name

of your theme in Solution Explorer, select Add New Item, and then select the

Skin File template.

4. Copy the source for the controls to the skin file.

5. Remove the ID properties from the control definitions in the skin file. Be sure to

leave the runat="server" attribute.

Adding a Cascading Style Sheet to Your Theme A cascading style sheet (CSS) con

tains style rules that are applied to elements in a Web page. CSS styles define how ele

ments are displayed and where they are positioned on the page. Instead of assigning

attributes to each element on your page individually, you can create a general rule that

applies attributes whenever a Web browser encounters an instance of an element or

an element that is assigned to a certain style class.

To add a CSS to your Web site, right-click the name of your theme in Solution

Explorer, select Add New Item, and then select the Style Sheet template. When the

theme is applied to a page, ASP.NET adds a reference to the style sheet to the head ele

ment of the page.

MORE INFO Cascading Style Sheets

CSS is not part of ASP.NET; CSS works for any type of Web site. It isn’t specifically covered in the

exam objectives and won’t be covered in detail in this book. However, CSS is still extremely useful,

and all Web developers should be familiar with CSS. For more information about CSS, see ―Cascad

ing Style Sheets Overview‖ at http://msdn2.microsoft.com/en-US/library/240ww6sz(VS.80).aspx.

http://msdn2.microsoft.com/en-US/library/240ww6sz(VS.80).aspx

608

Chapter 9 Customizing and Personalizing a Web Application

Applying a Theme Programmatically

If you just want to provide a consistent appearance for your Web site, you should spec

ify a theme in page declarations or configuration files. This provides a single interface

for all users who visit your Web site.

You can also give users a choice of themes. While this isn’t usually necessary for busi

ness Web sites, it’s a great way to allow users to customize consumer-oriented portal,

forum, and shopping sites.

To apply a theme programmatically, set the page’s Theme property in the Page_PreInit

method. The following code demonstrates how to set the theme based on a query

string value; however, this works equally well using cookies or session state:

'VB

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.PreInit

 Select Case Request.QueryString("theme")

Case "Blue"

Page.Theme = "BlueTheme"

Case "Pink"

Page.Pink = "PinkTheme"

 End Select

End Sub

//C#

Protected void Page_PreInit(object sender, EventArgs e)

{

 switch (Request.QueryString["theme"])

{

case "Blue":

Page.Theme = "BlueTheme";

break;

case "Pink":

Page.Theme = "PinkTheme";

break;

}

}

Similarly, you can apply a theme to specific controls by setting the control’s SkinID

property in the Page_PreInit method. The following code shows how to set the skin for

a control named Calendar1:

'VB

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.PreInit

 Calendar1.SkinID = "BlueTheme"

End Sub

//C#

Lesson 2: Using Themes and User Profiles

609

void Page_PreInit(object sender, EventArgs e)

{

 Calendar1.SkinID = "BlueTheme";

}

To programmatically apply a style sheet theme (which works just like a theme but

doesn’t override control attributes), override the StyleSheetTheme property, and in the

Get accessor, return the name of the style sheet theme. The following code example

shows how to set a theme named BlueTheme as the style sheet theme for a page:

'VB

Public Overrides Property StyleSheetTheme() As String

Get

 Return "BlueTheme"

End Get

Set(ByVal value As String)

End Set

End Property

//C#

public override String StyleSheetTheme

{

 get { return "BlueTheme"; }

}

Using User Profiles

You can provide users with a custom experience in your Web site by defining and

using profile properties, which you can use to track user information (address, city),

preferences (color scheme, list of stocks to follow), or any custom information

required by your application (shopping cart). Once you define profile properties,

ASP.NET automatically associates individual instances of the profile properties with

each user, and you can use code to set or get the values. ASP.NET persists property val

ues in a data store (which you can configure), and the next time a user visits your site,

ASP.NET automatically retrieves the profile property value for that user.

The sections that follow describe different ways you can utilize user profiles and shows

you how to implement profiles.

Configuring the SQL Server Database

Though you can create your own ASP.NET profile provider, by default, ASP.NET stores

profile information in a SQL Server database using the SqlProfileProvider class. If you

are using a SQL Server 2005 Express Edition database that is installed using the

610

Chapter 9 Customizing and Personalizing a Web Application

default configuration on the same computer as the Web server (as it might be on your

development computer), you don’t need to do anything to configure the database.

However, if you are using a different database, such as the standard SQL Server 2005,

you must create a database to be used by the SqlProfileProvider. You can create the data

base by running the Aspnet_regsql.exe command, which is found in the following path:

%windows%\Microsoft .NET\Framework\<version>

When you run the tool, you specify the -Ap option. The following command shows

the syntax that you use to create the database required to store ASP.NET profiles using

the SqlProfileProvider:

aspnet_regsql.exe -Ap

Comparing Authenticated and Anonymous Profiles

You can use profiles with either authenticated or non-authenticated users. If your

Web application requires user authentication, you can immediately begin using pro

files, because profiles are automatically enabled for authenticated users.

MORE INFO Authentication

For more information about user authentication, read Chapter 11, ―Implementing Authentication and

Authorization.‖

To use profiles on a site that does not authenticate users, you must explicitly enable

profiles. After you enable anonymous profiles, ASP.NET creates a unique identification

for each user the first time he or she visits your site, and tracks the user with a cookie.

The cookie is set to expire about 70 days after the user last visited your site. User pro

files can also function without cookies by storing unique identifiers in the URL of the

page request; however, the profile is lost when the user closes his or her browser.

Enabling Anonymous User Profiles

To use profiles for unauthenticated users, you first enable profiles in your Web.config

file. To do this, add an <anonymousIdentification> element to your <system.web> section

and set the enabled attributes to true, as is demonstrated here:

<configuration>

 <system.web>

 <anonymousIdentification enabled="true" />

 </system.web>

</configuration>

Lesson 2: Using Themes and User Profiles

611

The <anonymousIdentification> element has several other attributes that you can

define to control how cookies are used. However, the defaults are typically sufficient.

Additionally, when you define properties, you must set the allowAnonymous attribute

for each property to true.

Migrating Anonymous User Profiles to Authenticated User Profiles

If you enable anonymous user profiles and later require authentication, ASP.NET cre

ates a new profile for the user. To avoid losing the user’s profile information, respond

to the MigrateAnonymous event which ASP.NET raises when the user logs in. The fol

lowing code demonstrates how to migrate information when a user is authenticated:

'VB

Public Sub Profile_OnMigrateAnonymous(sender As Object, args As ProfileMigrateEventArgs)

 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(args.AnonymousID)

 Profile.ZipCode = anonymousProfile.ZipCode

 Profile.CityAndState = anonymousProfile.CityAndState

 Profile.StockSymbols = anonymousProfile.StockSymbols

 ' Delete the anonymous profile. If the anonymous ID is not

 ' needed in the rest of the site, remove the anonymous cookie.

 ProfileManager.DeleteProfile(args.AnonymousID)

 AnonymousIdentificationModule.ClearAnonymousIdentifier()

End Sub

//C#

public void Profile_OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)

{

 ProfileCommon anonymousProfile = Profile.GetProfile(args.AnonymousID);

 Profile.ZipCode = anonymousProfile.ZipCode;

 Profile.CityAndState = anonymousProfile.CityAndState;

 Profile.StockSymbols = anonymousProfile.StockSymbols;

 // Delete the anonymous profile. If the anonymous ID is not

 // needed in the rest of the site, remove the anonymous cookie.

 ProfileManager.DeleteProfile(args.AnonymousID);

 AnonymousIdentificationModule.ClearAnonymousIdentifier();

}

Configuring Profile Properties

Before you can use profiles, you must first define the properties that you want to track

for each user in the Web.config file. For example, if you want to track the user’s first

612

Chapter 9 Customizing and Personalizing a Web Application

and last name in string values, and the date he or she first visited the site in a DateTime

object, the <profile> section of the configuration file could look like this:

<configuration>

 <system.web>

 <profile>

<properties>

 <add name="FirstName" />

 <add name="LastName" />

 <add name="FirstVisit" type="System.DateTime" />

</properties>

 </profile>

 </system.web>

</configuration>

Notice that you don’t have to explicitly declare the type for string values, but you do

need to set the type attribute for any other class. By default, each property is enabled

only for authenticated users. To enable properties to be used by anonymous users, set

the allowAnonymous attribute to true for each property:

<anonymousIdentification enabled="true" />

<profile>

 <properties>

 <add name="FirstName" allowAnonymous="true" />

 <add name="LastName" allowAnonymous="true" />

 <add name="FirstVisit" type="System.DateTime" allowAnonymous="true" />

 </properties>

</profile>

You can also define groups of properties, as the following configuration segment dem

onstrates:

<profile enabled="true">

 <properties>

 <group name="Address">

 <add name="Street" />

 <add name="City" />

 <add name="PostalCode" />

 </group>

 </properties>

</profile>

In this example, you could access the street using Profile.Address.Street.

MORE INFO Adding user-defined types to profile properties

You can also add custom classes to profiles. For more information, read ―Defining ASP.NET Profile

Properties‖ at http://msdn2.microsoft.com/en-us/library/d8b58y5d(VS.80).aspx.

http://msdn2.microsoft.com/en-us/library/d8b58y5d(VS.80).aspx

Lesson 2: Using Themes and User Profiles

Defining and Retrieving User Properties

613

Once you’ve configured which properties you want to track for users, you can pro

grammatically define and retrieve these values using the Profile object, as the follow

ing example shows:

'VB

Profile.FirstName = firstNameTextBox.Text

Profile.LastName = lastNameTextBox.Text

greetingTextBox = "Welcome, " + Profile.FirstName + " " + Profile.LastName

//C#

Profile.FirstName = firstNameTextBox.Text;

Profile.LastName = lastNameTextBox.Text;

greetingTextBox = "Welcome, " + Profile.FirstName + " " + Profile.LastName;

Using profiles in this way is extremely easy compared to the alternatives, because you

do not need to explicitly determine who the user is nor perform any database look

ups. Simply getting the property value out of a profile causes ASP.NET to perform the

necessary actions to identify the current user and look up the value in the persistent

profile store.

Dynamically Adding Controls

Another way to customize Web pages for users is to dynamically add controls. While

you can add controls programmatically, the task is greatly simplified if you add a

PlaceHolder control at design time. To use a PlaceHolder control to enable you to

dynamically add other controls, follow these steps:

1. Add a PlaceHolder control to your Web page.

2. In your code (typically the Page_Load event handler), create an instance of the

control you want to add to the page.

3. Call the PlaceHolder.Controls.Add method to add your control to the Place-

Holder’s location.

You can even add multiple controls using a single PlaceHolder, which is useful for

building more complex dynamic pages. The following code demonstrates this by add

ing a Button, a Label containing an HTML line break, and then a second Button:

'VB

Protected Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Button1 As Button = New Button()

 Button1.Text = "Button 1"

 PlaceHolder1.Controls.Add(Button1)

614

Chapter 9 Customizing and Personalizing a Web Application

 Dim Literal1 As New Literal()

 Literal1.Text = "
"

 PlaceHolder1.Controls.Add(Literal1)

 Dim Button2 As New Button()

 Button2.Text = "Button 2"

 PlaceHolder1.Controls.Add(Button2)

End Sub

//C#

void Page_Load(object sender, EventArgs e)

{

 Button Button1 = new Button();

 Button1.Text = "Button 1";

 PlaceHolder1.Controls.Add(Button1);

 Literal Literal1 = new Literal();

 Literal1.Text = "
";

 PlaceHolder1.Controls.Add(Literal1);

 Button Button2 = new Button();

 Button2.Text = "Button 2";

 PlaceHolder1.Controls.Add(Button2);

}

Lab: Applying Themes and User Profiles

In this lab, you work with local and global themes, and then track information about

users in profiles.

� Exercise 1: Apply local and global themes

In this exercise, you create two local themes to color buttons and labels: blue and

green. You will test the themes, move them to the global location, and verify that they

still work.

1. Create a new ASP.NET Web site named MyThemes in either C# or Visual Basic

using Visual Studio 2005. Use Hypertext Transfer Protocol (HTTP) to store the

files on a Web server (such as IIS installed on your local computer), rather than

storing the Web site on your file system.

2. Add the App_Themes folder to your Web site and add two subfolders: BlueTheme

and GreenTheme.

3. In both BlueTheme and GreenTheme, create skin files named Button.skin and

Label.skin. Solution explorer should resemble Figure 9-6.

Lesson 2: Using Themes and User Profiles

Figure 9-6 Create skin files for Label and Button controls in two custom themes.

4. Open Default.aspx in design view and add a Label and a Button control.

615

5. Edit the properties of the two controls so that they have dark blue text on a light

blue background.

6. Switch to the source view of Default.aspx and copy the source code for your

Label control to the clipboard.

7. Open the App_Themes\BlueTheme\Label.skin file. Paste the source code for

your Label control into the file. Then remove the ID and Text attributes, as

shown here:

<asp:Label runat="server" BackColor="#C0FFFF" ForeColor="#0000C0"></asp:Label>

8. Switch to the source view of Default.aspx and copy the source code for your But

ton control to the clipboard.

9. Open the App_Themes\BlueTheme\Button.skin file. Paste the source code for

your Button control into the file. Then remove the ID and Text attributes, as

shown here:

<asp:Button runat="server" BackColor="#C0FFFF" ForeColor="#0000C0" />

10. Repeat steps 5 through 9, but define green colors for the Label and Button con

trols and use the source code to create the Label.skin and Button.skin files in the

GreenTheme.

11. Add a new Web Form to your application and name it Home.aspx. Add default

Label and Button controls to the form. Then press Ctrl+F5 to save your files and

view Home.aspx in your browser. Note that the Label and Button controls both

appear with black text on a white background.

12. In the design view for Home.aspx, view the document properties and set the

StyleSheetTheme attribute to BlueTheme. Then change the foreground color of

the Button control to Red. Press Ctrl+F5 to save your files and view Home.aspx

in your browser. Note that the style sheet theme affects both the foreground and

background colors of the Label control, but it does not change the red text of the

616

Chapter 9 Customizing and Personalizing a Web Application

Button control. Because you defined the foreground color of the Button control,

the setting overrode the StyleSheetTheme.

13. In the design view for Home.aspx, view the document properties, remove the

StyleSheetTheme attribute, and set the Theme attribute to BlueTheme. Press

Ctrl+F5 to save your files and view Home.aspx in your browser. Note that the

theme affects both the foreground and background colors of both controls,

because the Theme attribute overrides control settings.

14. Using Windows Explorer, create a folder at the following location on your Web

server: \wwwroot\aspnet_client\system_web\<version>\Themes. Move both

the BlueTheme and GreenTheme folders from your application directory to this

new global theme folder.

15. Now return to Visual Studio and press Ctrl+F5 to view Home.aspx in your browser.

Note that the two controls are still affected by BlueTheme. Because the themes are

now located in a global theme folder, any Web application can apply the theme.

16. View the source for Home.aspx, and look at the ―@ Page‖ declaration. Manually

change the Theme attribute to GreenTheme. You could also change this attribute

using the designer. Now press Ctrl+F5 to view Home.aspx in your browser and

verify that the controls are colored green.

As this exercise demonstrates, it takes only a few minutes to customize the appear

ance of all controls in a Web application.

� Exercise 2: Create anonymous user profiles

In this exercise, you enable user profiles for anonymous users and track information

for Web site visitors.

1. Create a new ASP.NET Web site named TrackUsers in either C# or Visual Basic

using Visual Studio 2005. For simplicity, store the Web site using the file system

instead of HTTP or File Transfer Protocol (FTP).

2. If necessary, add a Web.config file to your project. Then configure it to enable

anonymous user profiles. For example, you can use this Web.config file:

<configuration>

 <system.web>

 <anonymousIdentification enabled="true" />

 </system.web>

</configuration>

3. Edit the Web.config file to enable the following profile attributes:

a. Name, as a String

b. FirstVisit, as a DateTime object

Lesson 2: Using Themes and User Profiles

617

Then save the Web.config file so that the properties are immediately available in

Visual Studio. The following Web.config example demonstrates this:

<configuration>

 <system.web>

 <anonymousIdentification enabled="true" />

 <profile>

 <properties>

 <add name="Name" allowAnonymous="true" />

 <add name="FirstVisit" type="System.DateTime" allowAnonymous="true" />

 </properties>

 </profile>

 </system.web>

</configuration>

4. Add the following controls to the Default.aspx Web form:

a. TextBox with an ID of nameTextBox.

b. Label with an ID of greetingLabel. Remove the default text.

c. Button with an ID of Button1.

5. Now create a method named Greet_User in the Default.aspx code-behind file to

define the user’s first visit if it hasn’t already been defined, and then display the

user’s name and first visit time using the greetingLabel control. The following

code demonstrates one way to do this:

'VB

Protected Sub Greet_User()

'Check if the user’s name is defined, and greet him or her if it is

 If Profile.Name.Length > 0 Then

greetingLabel.Text = "Welcome, " + Profile.Name + "! "

Else

greetingLabel.Text = "Welcome, unidentified user! "

 End If

'Define the first visit time if necessary

 If Profile.FirstVisit.Year < 1900 Then

Profile.FirstVisit = DateTime.Now

 End If

'Display the first visit time

 greetingLabel.Text += "Your first visit was " + Profile.FirstVisit

End Sub

//C#

protected void Greet_User()

{

 // Check if the user's name is defined, and greet him or her if it is

 if (Profile.Name.Length > 0)

greetingLabel.Text = "Welcome, " + Profile.Name + "! ";

else

greetingLabel.Text = "Welcome, unidentified user! ";

618

Chapter 9 Customizing and Personalizing a Web Application

 // Define the first visit time if necessary

 if (Profile.FirstVisit.Year < 1900)

 Profile.FirstVisit = DateTime.Now;

 // Display the first visit time

 greetingLabel.Text += "Your first visit was " + Profile.FirstVisit;

}

6. If you are using Visual Basic, edit the Default.aspx ―@ Page‖ declaration to set the

AutoEventWireup attribute to true. This is set to true by default in C#. This dem

onstrates the proper ―@ Page‖ declaration:

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"

Inherits="_Default" %>

7. In the Page_Load method (which you need to create if you are using Visual

Basic), call your Greet_User method.

'VB

Protected Sub Page_Load()

 Greet_User()

End Sub

//C#

protected void Page_Load(object sender, EventArgs e)

{

 Greet_User();

}

8. Using the design view for the Default.aspx file, double-click the button to create

a Click event handler. In the event handler, use the contents of the nameTextBox

control to define Profile.Name. Then call Greet_User. The following code demon

strates this:

'VB

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Button1.Click

 Profile.Name = nameTextBox.Text

 Greet_User()

End Sub

//C#

protected void Button1_Click(object sender, EventArgs e)

{

 Profile.Name = nameTextBox.Text;

 Greet_User();

}

9. Press Ctrl+F5 to build your Web page. Verify that the Web page greets you as an

unidentified user and displays the current time as your first visit.

10. In the text box, type your name. Then click the button. The Web page displays

your name and first visit time.

Lesson 2: Using Themes and User Profiles

619

11. Verify that the profile persists between user visits. Close all instances of your

Web browser, and then re-open the Web page. It greets you with your name and

the time of your first visit.

12. In Window Explorer, open the App_Data application subdirectory. Note that it

contains two files: Aspnetdb.mdf (the main SQL Server user profile database)

and Aspnetdb_log.ldf (the database log file).

As you can see, user profiles are easy to implement, but extremely powerful.

Chapter 11

Implementing Authentication
and Authorization

When the Web was young, most Web sites were public spaces that did not require

users to identify themselves. Today, most Web sites allow users to authenticate so that

the users can gain access to private information, site customization, and members-

only features.

With the Microsoft .NET Framework version 2.0, adding user-management capabili

ties to a Web application is easier than ever. As with earlier versions of the .NET

Framework, ASP.NET integrates with Windows security, allowing users to authenti

cate automatically with their Windows or Active Directory user names and pass

words. New to the .NET Framework is a set of Login controls and the Roles and

Membership classes. Together, these tools enable you to build simple user manage

ment into a Web application without writing a line of code, or, you can provide com

plex, customized user management by building on the framework.

Exam objectives in this chapter:

■ Establish a user’s identity by using forms authentication.

❑ Configure forms authentication for a Web application by using a configu

ration file.

❑ Enable cookieless forms authentication by setting the cookieless attribute.

❑ Use membership APIs and the Membership class to manage users.

❑ Enable anonymous identification.

■ Use authorization to establish the rights of an authenticated user.

❑ Manage roles in the Web Site Administration Tool.

❑ Ascertain whether a specific user is in a role.

❑ Determine the roles for a specific user by using the Roles object or the User

object.

❑ Store role information in a cookie.

681

682

Chapter 11 Implementing Authentication and Authorization

❑ Restrict access to files by using file authorization.

❑ Restrict access to portions of an application by using URL authorization.

■ Implement Microsoft Windows authentication and impersonation.

❑ Establish a user’s identity by using Windows authentication.

❑ Use impersonation to control access to resources.

■ Use login controls to control access to a Web application.

❑ Use the Login Web server control.

❑ Use the LoginView Web server control to view a user’s login status.

❑ Use the PasswordRecovery Web server control to allow a user to recover a

password.

❑ Use the LoginStatus Web server control to display either a login or logout

link.

❑ Use the LoginName Web server control to display a user’s login name on a

Web page.

❑ Use the CreateUserWizard Web server control as a UI for creating new Web

application user accounts.

❑ Use the ChangePassword Web server control to allow a user to change his or

her password.

❑ Specify the membership provider used for logging on.

❑ Configure a mail server so that login controls can be used to send e-mail

messages to users.

Lessons in this chapter:

■ Lesson 1: Using ASP.NET Membership . 684

■ Lesson 2: Using Windows, Forms, Passport, and Anonymous

Authentication . 699

Before You Begin

Before You Begin

683

To complete the lessons in this chapter, you should be familiar with Visual Basic (VB)

or C# and be comfortable with the following tasks:

■ Have Microsoft Windows XP and Microsoft Visual Studio 2005 installed with

Microsoft SQL Server 2005 Express Edition.

■ Be familiar with the Visual Studio 2005 Integrated Development Environment

(IDE).

■ Have a basic understanding of Hypertext Markup Language (HTML) and client-

side scripting.

Real World

Tony Northrup

People are going to try to hack into your application. It happens to everyone.

Even if your data isn’t all that important, script kiddies (people who use auto

mated tools to attempt to exploit security vulnerabilities) will explore your Web

server and Web site.

For that reason, you must create all Web applications with security in mind. If

you assume your site will be attacked, your odds of avoiding a compromise are

much greater.

684

Chapter 11 Implementing Authentication and Authorization

Lesson 1: Using ASP.NET Membership

The .NET Framework version 2.0 includes ASP.NET membership, which makes it

easy to add user-management capabilities to your Web site. ASP.NET membership

includes several different features:

■ Wizard-based configuration of user-management capabilities.

■ Browser-based user management and access control configuration.

■ A set of ASP.NET controls that provides users with the ability to log in, log out,

create new accounts, and recover lost passwords.

■ The Membership and Roles classes, which you can use to access user-manage

ment capabilities within your code.

This lesson describes these features and shows you how to use them in your own Web

applications.

MORE INFO Protecting Web servers

This chapter strives to provide the information that you need to maximize the security of your Web

applications. The topic of improving security for Web servers is massive, and most of the burden of

protection falls on the shoulders of system administrators. For more information about protecting

servers, read ―Securing Your Web Server‖ in Microsoft Developer Network (MSDN) on the Microsoft

Web site at http://msdn.microsoft.com/library/en-us/secmod/html/secmod89.asp. For more informa

tion about protecting ASP.NET applications, read ―Building Secure ASP.NET Applications: Authenti

cation, Authorization, and Secure Communication‖ at http://msdn.microsoft.com/library/en-us/

dnnetsec/html/SecNetch08.asp.

After this lesson, you will be able to:

■ List the login controls and describe each control’s purpose.

■ Describe how the Membership class can be used.

■ Describe how the Roles class can be used.

■ Configure an ASP.NET Web application to support user management.

Estimated lesson time: 45 minutes

Login Controls

ASP.NET version 2.0 provides controls, classes, and management tools for authenti

cating users with Web forms and then storing user information in a database,

enabling you to track and authenticate users without relying on Active Directory or

http://msdn.microsoft.com/library/en-us/secmod/html/secmod89.asp
http://msdn.microsoft.com/library/en-us/secmod/html/secmod89.asp
http://msdn.microsoft.com/library/en-us/
http://msdn.microsoft.com/library/en-us/

Lesson 1: Using ASP.NET Membership

685

the Windows local user database. Before the .NET Framework version 2.0 was

released, custom user authentication required creating many complex components

from scratch, including:

■ A login page.

■ A user database.

■ User-management tools.

■ Password-management tools.

Creating these components was once very time-consuming. Additionally, it was risky

to create these components from scratch, because a bug could compromise your

application’s security.

The .NET Framework includes controls and classes to simplify the process of adding

login capabilities to your Web application. The login controls include:

■ Login A user interface that prompts for user names and passwords and enables

users to select whether they want to be automatically authenticated the next

time they visit. You can use the Login control with ASP.NET membership without

writing any code, or you can write your own authentication code by adding a

handler for the Authenticate event.

■ LoginView Enables you to display different information to users who are logged

in. For example, you could use this link to go to site features that are available

only to authenticated users.

■ LoginStatus Displays a login link for users who haven’t been authenticated and

a logout link for users who are currently logged in.

■ LoginName Displays the current user’s user name, if logged in.

■ PasswordRecovery Enables password retrieval for a user by sending an e-mail

message to the user or by having the user answer a security question.

■ CreateUserWizard Gathers information from a new user and creates a new

account.

■ ChangePassword Enables a user who is logged in to change his or her password.

Additionally, you can use a ValidationSummary control to display detailed error infor

mation provided by some of these controls.

The functionality built into these controls enables you to create a Web site that enables

users to create their own accounts, change and reset their passwords, and log on and

686

Chapter 11 Implementing Authentication and Authorization

log off without writing any code. Additionally, administrators can use the ASP.NET

Web Site Administration Tool to manage user accounts and security settings from a

Web browser without understanding how the underlying Web.config files work.

Quick Check

1. Which control would you use to provide a login link?

2. Which login controls are useful only to authenticated users?

Quick Check Answers

1. The LoginStatus control.

2. The LoginName, ChangePassword, and LoginView controls.

The Membership Class

There are several classes and interfaces for user management; however, the most

important class is the System.Web.Security.Membership class.

NOTE .NET 2.0

The Membership class is new in the .NET Framework version 2.0.

Membership provides capabilities to add, remove, and find users. These capabilities

are provided by the following static methods:

■ CreateUser Adds a user to the database. Use this method if you create a custom

page to enable users or administrators to add new accounts.

■ DeleteUser Removes a user from the data store. Use this method if you create

custom user management tools.

■ FindUsersByEmail Gets a collection of membership users for whom the e-mail

addresses contain the specified e-mail addresses to match.

■ FindUsersByName Gets a collection of membership users for whom the user

names contain the specified user names to match.

■ GeneratePassword Creates a random password of the specified length. Use this

if you are implementing custom controls to generate or reset passwords.

■ GetAllUsers Returns a collection of all users in the database.

■ GetNumberOfUsersOnline Returns the number of users currently logged on.

Lesson 1: Using ASP.NET Membership

687

■ GetUser Returns a MembershipUser object representing the current logged-on

user. Call this method any time you need to access the current user’s account.

■ GetUserNameByEmail Gets a user name for which the e-mail address for the user

matches the specified e-mail address.

■ UpdateUser Updates the database with the information for the specified user.

Use this method if you create a page to enable users or administrators to modify

existing accounts.

■ ValidateUser Verifies that the supplied user name and password are valid. Use

this method to check a user’s credentials if you create your own custom login

controls.

The Roles Class

Role management consists of a set of classes and interfaces that establish roles for the

current user and manage role information. In ASP.NET user management, roles func

tion as user groups, enabling you to assign access controls to all users who are part of

a specific role. The most useful of these classes is System.Web.Security.Roles, which pro

vides capabilities to add users to or remove users from roles, create new roles, and

determine which roles a user is a member of.

NOTE .NET 2.0

The Roles class is new in the .NET Framework 2.0.

Roles provides many static methods, including the following:

■ AddUserToRole, AddUsersToRoles, AddUsersToRole, and AddUsersToRoles Adds a user

to a role

■ CreateRole Creates a new role

■ DeleteRole Deletes an existing role

■ FindUsersInRole Returns a collection of users in a role

■ GetAllRoles Returns a collection of all roles that currently exist

■ GetRolesForUser Returns a collection of roles for the current user

■ IsUserInRole Returns true if the user is a member of a specified role

■ RemoveUserFromRole, RemoveUsersFromRole, RemoveUserFromRoles, and

RemoveUsersFromRoles Removes a user from a role

688

Chapter 11 Implementing Authentication and Authorization

For example, if you want to add the current user to a role named Users, you could use the

following code (assuming an instance of CreateUserWizard is named CreateUserWizard1):

'VB

Roles.AddUserToRole(CreateUserWizard1.UserName, "Users")

//C#

Roles.AddUserToRole(CreateUserWizard1.UserName, "Users");

You cannot use the Roles class to manage Windows user groups when using Windows

authentication. Windows authentication is discussed in more detail in Lesson 2 of

this chapter.

Ideally, you structure your Web application so that you can control access by config

uring authorization for subfolders using the ASP.NET Web Site Administration Tool

(described later in this lesson). This capability, combined with the built-in login con

trols, can enable you to create your Web application without using either the Member

ship class or the Roles class. However, you should be familiar with these classes and

their functions so that you can provide customized user-management capabilities

when required.

Configuring Web Applications to Use ASP.NET Membership

To create a Web site that uses ASP.NET membership, follow these high-level steps:

1. Create a Web site structure. If a portion of your Web site requires authentication

or membership in a specific role, place the pages that should be protected in a

separate subfolder. If authentication is optional (for example, a user forum

where unauthenticated users can browse but not add messages), a separate sub-

folder is not required.

2. Configure ASP.NET Membership.

3. Create roles that function as user groups.

4. Optionally, create users and add them to the appropriate roles.

5. Create access rules to control which folders users and roles have access to.

6. Configure Simple Mail Transport Protocol (SMTP) e-mail settings to enable e-

mail notification and password resetting. You can do this from the Application

tab of the ASP.NET Web Site Administration Tool.

7. Create login pages using Visual Studio.

The sections that follow describe these steps in more detail.

Configuring ASP.NET Membership

Lesson 1: Using ASP.NET Membership

689

To configure ASP.NET membership by using the Web Site Administration Tool, follow

these steps:

1. Create an ASP.NET Web application using Visual Studio. If you plan to have sep

arate subfolders for different groups (for example, a folder that only authenti

cated users are allowed to access, or a folder for application administration tool

pages), create those folders first.

2. On the Website menu, select ASP.NET Configuration.

3. Select the Security tab and click the Use The Security Setup Wizard To Configure

Security Step By Step link.

4. In Step 1, click Next.

5. In Step 2, select From The Internet to use ASP.NET membership (as shown in

Figure 11-1) or select From A Local Area Network to use Windows authentica

tion. Click Next.

Figure 11-1 Choose From The Internet to create a custom user database or From A Local

Area Network to use Windows authentication.

6. In Step 3, the wizard displays a message stating that user information will be

stored using Advanced Provider Settings. By default, membership information is

stored in a Microsoft SQL 2005 Server Express Edition database file in the

690

Chapter 11 Implementing Authentication and Authorization

App_Data folder of your Web site. Click Next.

7. In Step 4, the wizard displays an option to create roles. Roles are essentially

group memberships, and you’ll need them for most membership scenarios. To

enable roles, select the Enable Roles For This Web Site check box. Then click

Next.

8. If you choose to enable roles, the wizard displays a page where you can create

roles. For example, you might create roles for Users and Administrators, as

shown in Figure 11-2. When you have created any roles you need, click Next.

Figure 11-2 Create roles to group users into categories.

9. In Step 5, you can create user accounts by entering the requested information

and then clicking Create User. You can also add user accounts later. When you

have created any user accounts you need, click Next.

10. In Step 6, add access rules to control which users and roles can access which

folders. Figure 11-3 illustrates rules restricting access to folders. When you have

added your access rules, click Next.

Lesson 1: Using ASP.NET Membership

Figure 11-3 Add access rules to restrict access to folders.

691

11. In Step 7, click Finish. You return to the Security tab of the Web Site Administra

tion Tool, where you can manage users, roles, and access rules.

Creating a Login Page

To create a login page, follow these steps:

1. Create a login page named Login.aspx. If you use another file name, you will

need to configure the new file name in your Web.config file. For more informa

tion about configuring forms authentication, read Lesson 2 in this chapter.

2. On your login page, add a Login control. The Login control prompts the user for

his or her credentials, as shown in Figure 11-4. The Login control includes fea

tures such as validation to ensure the user types a password.

Figure 11-4 The Login control prompts the user for credentials.

MORE INFO Changing the appearance of controls

You can use templates to change the appearance of login controls. For more information,

refer to Chapter 9, ―Customizing and Personalizing a Web Application.‖

692

Chapter 11 Implementing Authentication and Authorization

3. Add a ValidationSummary control to your login page and set the ValidationSum

mary.ValidationGroup property to the ID of your Login control. This describes

detailed error messages in the event the user forgets to type his or her password,

or if another validation event occurs. For example, if a user forgets to type the

password, the Login control displays a red asterisk by the Password field. If you

add a ValidationSummary control, it displays the message ―Password is required.‖

Invalid credential errors display in the Login control itself, but not in the Valida

tionSummary control.

4. Optionally, add a PasswordRecovery control to the login page. If a user forgets his

or her password, this control enables the user to type his or her user name and

receive a new, random password via e-mail, as shown in Figure 11-5. Optionally,

users can be required to answer a security question.

Figure 11-5 The PasswordRecovery control can send e-mail to users who request their

passwords.

5. Add a LoginStatus control to all pages of your site. The LoginStatus control gives

users a link to access your login page if they have not yet authenticated. If you are

using master pages, add the LoginStatus control to your master page.

6. That’s all you have to do if you are using ASP.NET membership and you plan to

handle user management by using the Web Site Administration Tool, because

the Login control automatically handles authentication. If the user provides valid

credentials, the user is logged in, and membership controls such as LoginStatus

automatically reflect that.

7. If the user does not provide valid credentials, the Login control prompts to

retype the password. You should create a handler for the Login.LoginError event

and perform security auditing by adding an event to the Security event log. Sim

ilarly, you should respond to the PasswordRecovery.UserLookupError and Passwor

dRecovery.AnswerLookupError events. Otherwise, users can guess passwords and

user names without administrators discovering it.

Creating a User Account-Creation Page

If you are creating a public Web application, you should create an account-creation

page to enable users to add their own user accounts. To create a user account-creation

page, follow these steps:

Lesson 1: Using ASP.NET Membership

693

1. Create a user account-creation page. For example, you might name it NewUser.aspx.

2. On your user account-creation page, add a CreateUserWizard control. The Cre

ateUserWizard control prompts the user for user name, password, e-mail, security

question, and security answer, as shown in Figure 11-6. The CreateUserWizard

control includes features such as validation to ensure the user types a password.

Figure 11-6 The CreateUserWizard control enables users to create accounts for themselves.

3. Create a handler for ContinueButtonClick event. At a minimum, you should redi

rect the user to a page linking to members-only content, as the following code

demonstrates:

'VB

Protected Sub CreateUserWizard1_ContinueButtonClick(ByVal sender As Object, ByVal e As

EventArgs)

 Response.Redirect("Members/Default.aspx")

End Sub

//C#

protected void CreateUserWizard1_ContinueButtonClick(object sender, EventArgs e)

{

 Response.Redirect("Members/Default.aspx");

}

By default, new user accounts do not belong to any roles. To add a new user to a role

(such as a default Users role), add a handler for the CreateUserWizard.CreatedUser

event, and then call the Roles.AddUserToRole method as described earlier in this lesson.

Creating a Password Change Page

To create a page to allow users to change their own passwords, follow these steps.

1. Create an account-management page. For example, you might name it Man

ageUser.aspx.

2. Add a ChangePassword control to the page.

694

Chapter 11 Implementing Authentication and Authorization

3. Add a ValidationSummary control to your login page and set the ValidationSum

mary.ValidationGroup property to the ID of your ChangePassword control. This

describes detailed error messages in the event the user forgets to type his or her

password, or another validation event occurs. For example, if a user forgets to

complete the Confirm New Password field, the ChangePassword control displays

a red asterisk by the Confirm New Password field. If you add a ValidationSum

mary control, the ValidationSummary control displays the message ―Confirm

New Password is required.‖ Invalid credential errors are displayed in the Login

control itself, and not the ValidationSummary control, however.

4. Create a handler for ContinueButtonClick event. At a minimum, you should redi

rect the user to a page linking to members-only content.

Lab: Configuring Authentication in ASP.NET Applications

In these exercises, you create an ASP.NET Web application and then configure it to

restrict access using role manager.

� Exercise 1: Create a Web site that uses ASP.NET Memberships

In this exercise, you create a new ASP.NET Web site and add support for ASP.NET

Memberships.

1. Create an ASP.NET Web application using Visual Studio.

2. Create two subfolders named Members and Admin. To each subfolder, add a

blank ASP.NET Web form named Default.aspx. Later, you’ll access these pages

to verify that ASP.NET requires proper authentication.

3. On the Website menu, select ASP.NET Configuration.

4. Select the Security tab and click the Use The Security Setup Wizard To Configure

Security Step By Step link.

5. On Step 1, click Next.

6. On Step 2, select the From The Internet option button. Then click Next.

7. On Step 3, click Next.

8. On Step 4, select the Enable Roles For This Web Site check box. Then click Next.

9. On the Create New Role page, create two roles: Users and Administrators. Then

click Next.

10. On Step 5, create two users: StandardUser and Admin. Provide your e-mail

address for each and make note of the passwords you assign. Then click Next.

Lesson 1: Using ASP.NET Membership

695

11. On Step 6, select the Admin directory. Create a rule that grants the Administra

tors role Allow access. Then create a rule that grants All Users Deny access. Note

that the new Deny rule appears before the default Allow-All rule, which means

users who are not members of the Administrators role have their access denied.

12. While still on Step 6, select the Members directory. Create a rule that grants the

Users role Allow access. Then create a rule that grants All Users Deny access.

Click Next.

13. On Step 7, click Finish.

14. You return to the Security tab of the Web Site Administration Tool. Click Create

Or Manage Roles.

15. For the Administrator role, click Manage. Click All, and then select User Is In

Role for Admin. Click Back.

16. For the Users role, click Manage. Click All, and then select User Is In Role for

StandardUser and Admin. Click Back.

17. Click the Application tab. Click Configure SMTP E-mail Settings. Configure your

SMTP server, type a From e-mail address, and then click Save. Click OK.

18. Return to Visual Studio and open the root Web.config file. Notice that the role-

Manager element is enabled and the authentication element is set to Forms.

19. Open Members/Web.config and Admin/Web.config. Notice that the Web Site

Administration Tool created these files and used them to specify the permissions

for each folder. You can also do this using a single Web.config file by specifying

the <location> element, as described in the next lesson.

Now the Web site is ready to use ASP.NET memberships, and you have created users,

roles, and access rules. Continue working with this Web site for the next exercise.

� Exercise 2: Create Web forms that use Login controls

In this exercise, you create Web forms using Login controls to take advantage of

ASP.NET membership.

1. Continue working with the Web site you created in the previous exercise, which

is configured to support ASP.NET membership and has users and roles added to

the database. Alternatively, you can open the completed Lesson 1, Exercise 1

project from the CD.

2. Create a new ASP.NET Web form named Login.aspx. Add the following controls:

A. A Login control

B. A PasswordRecovery control

696

Chapter 11 Implementing Authentication and Authorization

3. Open the root Default.aspx page. Add the following controls:

A. A HyperLink control with the Text property set to Members only and the

NavigateUrl set to Members/Default.aspx.

B. A HyperLink control with the Text property set to Administrators only and

the NavigateUrl set to Admin/Default.aspx.

C. A LoginStatus control.

4. Press Ctrl+F5 to open Default.aspx in a Web browser.

5. On the Default.aspx page, click the Members Only link to attempt to access a

protected page. Notice that ASP.NET detects that you are not authenticated and

redirects you to the default Login.aspx page. Also notice that the URL includes

a parameter named ReturnUrl that contains the page you were attempting to

access.

6. On the Login.aspx page, in the User Name box, type StandardUser. Type your

password in the Password box, and then click Log In. ASP.NET takes you to the

Members/Default.aspx page, which is blank. However, because it does not

return an error, you know you are successfully authenticated.

7. Click the Back button in your browser twice to return to the root Default.aspx

page, and then click the Administrators Only link. Even though you are already

authenticated, ASP.NET redirects you to the Login.aspx page because the Stan

dardUser account does not have access to the Admin folder.

8. On the Login.aspx page, in the User Name box, type Hacker. Then click Log In.

Notice that ASP.NET rejects your authentication attempt.

9. Under Forgot Your Password, type Admin, and then click Submit. Provide an

answer to your security question, and then click Submit to request a new pass

word. Check your e-mail for a message from the Web server containing your new

password.

10. After you have your new password, use the new credentials to authenticate.

ASP.NET takes you to the Admin/Default.aspx page, which is blank. However,

because it does not return an error, you know you are successfully authenticated.

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

Lesson 2: Using Windows, Forms, Passport,

and Anonymous Authentication

699

Though ASP.NET membership is a perfect fit for many Web applications, ASP.NET

actually supports four types of authentication:

■ Windows authentication

■ Forms authentication (which ASP.NET membership uses)

■ Passport authentication

■ Anonymous access

This lesson describes how to configure both Internet Information Services (IIS) and

your applications for each of the standard Web authentication types.

After this lesson, you will be able to:

■ Configure an ASP.NET Web application to require Windows authentication.

■ Create an ASP.NET Web application that uses custom forms for user authentication.

■ Configure an ASP.NET Web application to require Passport authentication.

■ Configure Web applications for anonymous access.

■ Configure impersonation so that ASP.NET uses non-default user credentials.

■ Restrict access to Web applications, files, and folders by manually editing Web.con

fig files.

Estimated lesson time: 45 minutes

Configuring Web Applications to Require Windows Authentication

If your application is targeted for use inside an organization, and users accessing the

application have existing user accounts within the local user database of the Web

server or Active Directory, you should authenticate users with Windows authentica

tion. You can configure Windows authentication in two ways: within IIS and within

your ASP.NET application. To provide defense in depth, use both techniques to

require authentication.

When a Web application requires Windows authentication, the application rejects

any request that does not include a valid user name and password in the request

header. The user’s browser then prompts the user for a user name and password.

Because the browser prompts the user for credentials, you do not have to create a page

to request the user’s user name and password. Some browsers, such as Microsoft

Internet Explorer, automatically provide the user’s current user name and password

700

Chapter 11 Implementing Authentication and Authorization

when the server is located on the intranet. This seamlessly authenticates the user,

relieving the need to retype the password for intranet site visits.

Additionally, because users are authenticated against the server’s local user database

or Active Directory domain, using Windows authentication saves you from creating a

database to store user credentials. Leveraging the Windows authentication mecha

nism is, therefore, the simplest way to authenticate users. To configure IIS to require

all users to authenticate on computers running Microsoft Windows Server 2003, fol

low these steps:

1. In the Administrative Tools program group, open the IIS Manager.

2. In the IIS Manager console, click to expand your server name, to expand Web

Sites, and then to expand the Web site.

3. Right-click the site or folder name you are configuring authentication for and

select Properties.

4. Click the Directory Security tab. In the Authentication And Access Control

group, click the Edit button.

5. Clear the Enable Anonymous Access check box, which is selected by default.

6. Select the Integrated Windows Authentication check box, as shown in Figure 11-7.

Optionally, select Digest Windows Authentication For Windows Domain Servers

to enable authentication across proxy servers.

Figure 11-7 For best results, configure Windows authentication in both IIS and your application.

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

7. Click OK twice to return to the IIS Manager console.

701

At this point, all Web requests to the virtual directory will require Windows authenti

cation, even if ASP.NET is configured for anonymous access only. Even though config

uring IIS is sufficient to require users to present Windows credentials, it is good practice

to edit the application’s Web.config file to also require Windows authentication.

Real World

Tony Northrup

I’ve spent time as both a developer and a systems administrator. Each role has

different responsibilities. Typically, systems administrators should be responsi

ble for configuring Windows security for a Web application. This doesn’t require

them to write any code, because they can configure it using the IIS Manager and

the ASP.NET Web Site Administration Tool.

So, if you’re creating an application that should use Windows authentication, it’s

okay to leave it up to the systems administrator to configure. Not all systems

administrators know how to properly configure it, however, so you should be

familiar with the process and be able to demonstrate how it’s done when you

hand off application support. You do need to configure forms authentication and

passport authentication, however, because those require application-specific

configuration settings, such as specifying the login page. Typically, you would

provide all the configuration information as part of your Web.config file.

To configure an ASP.NET application for Windows Authentication, edit the <authen-

tication> section of the Web.config file. This section, like most sections related to

ASP.NET application configuration, must be defined within the <system.web> section.

The <system.web> section, in turn, must exist within the <configuration> section. This

example shows the <authentication> section of the Web.config file configured to use

Windows authentication:

<configuration>

 <system.web>

 <authentication mode="Windows" />

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</configuration>

702

Chapter 11 Implementing Authentication and Authorization

The <authorization> section simply requires all users to be successfully authenticated.

Specifying <deny users="?" /> within <authorization> requires users to be authenti

cated, whereas specifying <allow users="*" /> within <authorization> bypasses

authentication entirely. The ―?‖ symbol represents unauthenticated users, while the

―*‖ symbol represents all users, both authenticated and unauthenticated.

You can also configure Windows authentication in your application’s Web.config file

by following these steps, which are more user-friendly:

1. Create an ASP.NET Web application using Visual Studio.

2. On the Website menu, select ASP.NET Configuration.

3. Select the Security tab, and then click Select Authentication Type.

4. Under How Will Your Users Access The Site, click From A Local Network. Then

click Done, as shown in Figure 11-8.

Figure 11-8 Select From A Local Network to enable Windows authentication.

Creating Custom ASP.NET Forms to Authenticate Web Users

Windows authentication presents the end user with a browser-generated dialog box.

Although giving the browser the responsibility of gathering the user’s user name and

password enables automatic authentication on intranet sites, it gives you, as a devel

oper, very little flexibility. Web applications developed for external sites commonly

use form-based authentication instead. Form-based authentication presents the user

with an HTML-based Web page that prompts the user for credentials.

Once authenticated via forms authentication, ASP.NET generates a cookie to serve as an

authentication token. The browser presents this cookie with all future requests to the

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

703

Web site, allowing the ASP.NET application to validate requests. This cookie can, option

ally, be encrypted by a private key located on the Web server, enabling the Web server to

detect an attacker who attempts to present a cookie that the Web server did not generate.

ASP.NET membership allows you to quickly add forms authentication to your Web

application. Because Microsoft thoroughly tests the controls and classes involved in

authentication and storing the user information, these controls are probably more

secure than controls that any developer might make. Therefore, you should use

ASP.NET membership whenever possible.

However, if you need complete control over how users are authenticated and man

aged, you can also create custom forms authentication controls and pages. In the sec

tions that follow, you will learn how to configure an ASP.NET configuration file to

require forms authentication, how to add user credentials to a Web.config file, and

how to create an ASP.NET Web form to authenticate users.

Configuring a Web.Config File for Forms Authentication

To configure forms authentication, you have to create an authentication page that uses

an HTML form to prompt the user for credentials. Therefore, forms authentication

can be used on only those ASP.NET Web applications developed with this authenti

cation method in mind. Although you can choose to rely on administrators to config

ure Windows or on anonymous authentication, you must distribute a Web.config file

for your application to use forms authentication.

Administrators deploying your application should not need to modify the Web.config

file, but they can control some aspects of how Forms authentication behaves, such as

configuring the timeout period after which a user will need to log on again. A simple

Web.config file requiring Forms authentication is shown here:

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginURL="LoginForm.aspx" />

 </authentication>

 <authorization>

 <deny users="?" />

 </authentication>

 </system.web>

</configuration>

In the preceding example, all users who have not yet signed in are redirected to the

LoginForm.aspx page when they attempt to access any ASP.NET file. Typically, the

704

Chapter 11 Implementing Authentication and Authorization

form prompts the user for a user name and password and handles authentication

within the application itself.

Regardless of the way the application handles the user’s input, the user’s credentials

are sent to the server as a Hypertext Transfer Protocol (HTTP) request—without any

automatic encryption. HTTP is the protocol Web browsers and Web servers use to

communicate. The best way to ensure privacy of user credentials submitted by using

forms authentication is to configure an Secure Sockets Layer (SSL) certificate within

IIS and require Hypertext Transfer Protocol Secure (HTTPS) for the login form. HTTPS is

an encrypted form of the HTTP protocol, which is used by virtually every e-commerce

Web site on the Internet to protect private information about end users and to protect

end users from submitting private information to a rogue server impersonating

another server.

The user name and password can be checked against a database, a list contained in

the Web.config file, an Extensible Markup Language (XML) file, or any other mecha

nism you create. Forms authentication is tremendously flexible; however, you are

entirely responsible for protecting your authentication mechanism from attackers.

Because proof of authentication is stored in a cookie provided by the Web server (by

default), and that cookie generally contains only the user’s user name, an attacker can

potentially create a fake cookie to trick the Web server into considering the user as

authenticated. ASP.NET includes the ability to encrypt and validate authentication

cookies, but naturally, this protection includes some overhead for the Web server.

The type of encryption and validation used is controlled by the protection attribute of

the <authentication> section. If the protection attribute is not set, it defaults to All. If

the protection attribute is set to Encryption, the cookie is encrypted with 3DES. This

encryption protects the privacy of the data contained in the cookie but performs no

validation. If the protection attribute is set to Validation, as the following example

demonstrates, the server verifies the data in the cookie upon each transaction to

reduce the likelihood of it being modified between the time it is sent from the browser

and the time it is received by the server. If the protection attribute is set to None, nei

ther encryption nor validation is performed. This setting reduces the overhead on the

server, but it is suitable only in situations where privacy is not a concern, such as Web

site personalization. Note its usage here:

<authentication mode="Forms" protection="Validation" >

 <forms loginURL="LoginForm.aspx" />

</authentication>

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

IMPORTANT Optimizing security for forms authentication

705

For optimal security (with a slight performance cost), leave protection at the default setting of All.

By default, ASP.NET stores the authentication token in a cookie for most devices.

However, if the browser does not support cookies, ASP.NET will store the authentica

tion information as part of the URL. You can control this behavior by setting the cook

ieless attribute of the <forms> element to one of the following settings:

■ UseCookies Always attempts to send a cookie to the client, even if the client indi

cates it cannot support cookies.

■ UseUri Always stores the authentication token as part of the URL rather than a

cookie. Technically, the token is stored in the Uniform Resource Identifier (URI),

which is the last portion of the URL.

■ AutoDetect If a browser indicates that it supports cookies, the AutoDetect set

ting causes ASP.NET to test whether the browser actually does support cookies.

If it does not, or if the browser indicates that it does not support cookies,

ASP.NET uses cookieless authentication instead.

■ UseDeviceProfile The default setting, UseDeviceProfile, uses a cookie to prove

authentication if the browser profile indicates that it supports cookies. You

might find that some users have changed the default setting to not allow cookies.

In this case, forms authentication does not work properly unless you change this

setting to AutoDetect.

For example, the following section of a Web.config file enables cookieless forms

authentication for all clients. This works well, but it causes the authentication token

to be included in bookmarks and whenever the user sends a URL to another user:

<authentication mode="Forms" >

 <forms

 Cookieless="UseUri"

 loginURL="LoginForm.aspx" />

</authentication>

Another important attribute of the <forms> section is timeout, which defines, in minutes,

the amount of idle time allowed between requests before the user is forced to log on

again. If the <forms> section is <forms loginUrl="YourLogin.aspx" timeout="10">, the

user is forced to log on again if he or she does not send any requests to the ASP.NET

application within 10 minutes. This number should be decreased to reduce the risk of

706

Chapter 11 Implementing Authentication and Authorization

the browser being misused while the user is away from the computer. The <forms> sec

tion has other attributes, but LoginUrl, protection, and timeout are the most important.

Quick Check

1. By default, under what circumstances does forms authentication provide

cookies to the browser?

2. If you have users who have disabled cookies in their browsers, what can

you do to enable them to use forms authentication?

Quick Check Answers

1. By default, cookies are provided to browser types that support cookies,

whether or not the browser has cookies enabled.

2. Use the AutoDetect setting.

Configuring User Accounts in the Web.Config File

To avoid creating a database to store user credentials, you can store the user creden

tials directly in the Web.config file. The passwords can be stored in one of three for

mats: clear text, encrypted with the MD5 one-way hash algorithm, or encrypted with

the SHA1 one-way hash algorithm. Using one of the two hash algorithms to mask the

user credentials reduces the likelihood that a malicious user with read access to the

Web.config file will gather another user’s login information. Define the hashing

method used within the <forms> section, in the <credentials> section. An example is

shown here:

<authentication mode="Forms">

 <forms loginUrl="login.aspx" protection="Encryption" timeout="30" >

 <credentials passwordFormat="SHA1" >

 <user name="Eric‖ password="07B7F3EE06F278DB966BE960E7CBBD103DF30CA6"/>

 <user name="Sam" password="5753A498F025464D72E088A9D5D6E872592D5F91"/>

</credentials>

 </forms>

</authentication>

To enable administrators to use hashed password information in the Web.config file,

your ASP.NET application must include a page or tool to generate these passwords.

The passwords are stored in hexadecimal format and hashed with the specified hash

ing protocol. You can use the System.Security.Cryptography namespace to generate

such a hash. The following console application demonstrates this by accepting a

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

707

password as a command-line parameter and displaying the hash of the password.

The resulting hash can be pasted directly into the Web.config file.

'VB

Imports System.Security.Cryptography

Imports System.Text

Module Module1

 Sub Main(ByVal args As String())

Dim myHash As SHA1CryptoServiceProvider = New SHA1CryptoServiceProvider

Dim password As Byte() = Encoding.ASCII.GetBytes(args(0))

myHash.ComputeHash(password)

For Each thisByte As Byte In myHash.Hash

Console.Write(thisByte.ToString("X2"))

Next

Console.WriteLine()

 End Sub

End Module

//C#

using System;

using System.Security.Cryptography;

using System.Text;

namespace HashExample

{

 class Program

{

static void Main(string[] args)

{

SHA1CryptoServiceProvider myHash=new SHA1CryptoServiceProvider();

byte[] password = Encoding.ASCII.GetBytes(args[0]);

myHash.ComputeHash(password);

foreach (byte thisByte in myHash.Hash)

Console.Write(thisByte.ToString("X2"));

Console.WriteLine();

}

}

}

Alternatively, you can call the FormsAuthentication.HashPasswordForStoringInConfigFile

method to generate a password hash. This method is described in the next section.

IMPORTANT Storing credentials in a .config file

You should store credentials in a .config file only during testing. Protecting passwords with a hash

is little deterrent to an attacker who can read the contents of the .config file, because hashed pass

word databases exist that can quickly identify common passwords.

708

Chapter 11 Implementing Authentication and Authorization

The FormsAuthentication Class

The FormsAuthentication class is the basis for all forms authentication in ASP.NET. The

class includes the following read-only properties, which you can use to programmat

ically examine the current configuration:

■ FormsCookieName Returns the configured cookie name used for the current

application.

■ FormsCookiePath Returns the configured cookie path used for the current appli

cation.

■ RequireSSL Gets a value indicating whether the cookie must be transmitted

using SSL (that is, over HTTPS only).

IMPORTANT Improving security if the Web server has an SSL certificate

Enable RequireSSL for best security. This will ensure that forms authentication is encrypted.

■ SlidingExpiration Gets a value indicating whether sliding expiration is enabled.

Enabling sliding expiration resets the user’s authentication timeout with every

Web request.

IMPORTANT Improving security (at the cost of convenience)

Disable SlidingExpiration for the highest level of security. This prevents a session from remain

ing open indefinitely.

Additionally, you can call the following methods:

■ Authenticate Attempts to validate the credentials against those contained in the

configured credential store, given the supplied credentials.

■ Decrypt Returns an instance of a FormsAuthenticationTicket class, given a valid

encrypted authentication ticket obtained from an HTTP cookie.

■ Encrypt Produces a string containing an encrypted authentication ticket suit

able for use in an HTTP cookie, given a FormsAuthenticationTicket object.

■ GetAuthCookie Creates an authentication cookie for a given user name.

■ GetRedirectUrl Returns the redirect URL for the original request that caused the

redirect to the login page.

■ HashPasswordForStoringInConfigFile Given a password and a string identifying

the hash type, this routine produces a hash password suitable for storing in a

configuration file. If your application stores user credentials in the Web.config

http://ASP.NET

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

709

file and hashes the password, build this method into a management tool to

enable administrators to add users and reset passwords.

■ RedirectFromLoginPage Redirects an authenticated user back to the originally

requested URL. Call this method after verifying a user’s credentials with the

Authenticate method. You must pass this method a string and a Boolean value.

The string uniquely identifies the user, and the method uses it to generate a

cookie based on that information. The Boolean value, if true, allows the browser

to use the same cookie across multiple browser sessions. Generally, this unique

piece of information should be the user’s user name.

■ RenewTicketIfOld Conditionally updates the sliding expiration on a FormsAu

thenticationTicket object.

■ SetAuthCookie Creates an authentication ticket and attaches it to the cookie’s

collection of the outgoing response. It does not perform a redirect.

■ SignOut Removes the authentication ticket, essentially logging the user off.

Creating a Custom Forms Authentication Page

When using forms authentication, you must include two sections at a minimum:

■ A forms authentication page

■ A method for users to log off and close their current sessions

To create a forms authentication page, create an ASP.NET Web form to prompt the

user for credentials and call members of the System.Web.Security.FormsAuthentication

class to authenticate the user and redirect him or her to a protected page. The follow

ing code sample demonstrates an overly simple authentication mechanism that just

verifies that the contents of usernameTextBox and passwordTextBox are the same, and

then calls the RedirectFromLoginPage method to redirect the user to the page originally

requested. Notice that the Boolean value passed to RedirectFromLoginPage is true, indi

cating that the browser saves the cookie after the browser is closed, enabling the user

to remain authenticated if the user closes and reopens his or her browser before the

authentication cookie expires.

'VB

If usernameTextBox.Text = passwordTextBox.Text Then

 FormsAuthentication.RedirectFromLoginPage(usernameTextBox.Text, True)

End If

//C#

if (usernameTextBox.Text == passwordTextBox.Text)

 FormsAuthentication.RedirectFromLoginPage(usernameTextBox.Text, true);

710

Chapter 11 Implementing Authentication and Authorization

Although the authentication mechanism demonstrated in the previous code sample

(verifying that the user name and password are equal) can never provide adequate

protection for a Web application, it demonstrates the flexibility of forms authentica

tion. You can check the user’s credentials using any mechanism required by your

application. Most often, the user name and a hash of the user’s password is looked up

in a database.

If user credentials are stored in the Web.config file, or you have configured them using

ASP.NET membership, call the FormsAuthentication.Authenticate method to check the

credentials. Simply pass to the method the user’s user name and password. The

method returns true if the user’s credentials match a value in the Web.config file. Oth

erwise, it returns false. The following code sample demonstrates the use of this

method to redirect an authenticated user. Notice that the Boolean value passed to

RedirectFromLoginPage is false, indicating that the browser does not save the cookie

after the browser is closed, requiring the user to reauthenticate if he or she closes and

reopens the browser, thus improving security:

'VB

If FormsAuthentication.Authenticate(username.Text, password.Text) Then

 ' User is authenticated. Redirect user to the page requested.

 FormsAuthentication.RedirectFromLoginPage(usernameTextBox.Text, False)

End If

//C#

if (FormsAuthentication.Authenticate(username.Text,

password.Text))

{

 // User is authenticated. Redirect user to the page requested.

 FormsAuthentication.RedirectFromLoginPage(usernameTextBox.Text, false);

}

In addition to creating a page to authenticate users, provide a method for users to log

off of the application. Generally, this is a simple ―Log out‖ hyperlink that calls the

FormsAuthentication.SignOut static method to remove the user’s authentication

cookie.

Configuring Web Applications to Require Passport Authentication

You can also authenticate users using a service from Microsoft called Passport. Pass

port is a centralized directory of user information that Web sites can use, in exchange

for a fee, to authenticate users. Users can choose to allow the Web site access to per

sonal information stored on Passport, such as the users’ addresses, ages, and inter

ests. Storing information about users worldwide within the Passport service relieves

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

711

end users from maintaining separate user names and passwords on different sites.

Further, it saves the user time by eliminating the need to provide personal informa

tion to multiple Web sites.

Exam Tip Passport authentication probably won’t be covered on the 70-528 exam.

MORE INFO Passport software development kit

For more detailed information about the requirements of building a Web application that uses

Passport, you can download and review the free Passport software development kit from MSDN on

the Microsoft Web site at http://support.microsoft.com/?kbid=816418.

Configuring Web Applications for Only Anonymous Access

You can explicitly disable authentication for your application if you know that it will

be used only by anonymous users. However, in most cases where your application

does not require authentication, you should simply not provide an authentication

configuration setting in the Web.config file and allow the system administrator to

configure authentication with IIS.

This example shows a simple Web.config file that allows only anonymous access to an

ASP.NET application:

<configuration>

 <system.web>

 <authentication mode="None" />

 </system.web>

</configuration>

Configuring Impersonation by Using .config Files

By default, ASP.NET applications make all requests for system resources from the ASP

NET account (IIS 5.0) or the Network Service account (IIS 6.0). This setting is config

urable and is defined in the <processModel> item of the <system.web> section of the

Machine.config file. The default setting for this section is:

<processModel autoConfig="true" />

Setting autoConfig to true causes ASP.NET to automatically handle impersonation.

However, you can change autoConfig to false and set the userName and password

attribute to define the account ASP.NET impersonates when requesting system

resources on behalf of a Web user.

http://support.microsoft.com/?kbid=816418

712

Chapter 11 Implementing Authentication and Authorization

Automatic configuration is sufficient for most ASP.NET implementations. However, in

many cases, administrators need to configure ASP.NET to impersonate the client’s

authenticated user account, IIS’s anonymous user account, or a specific user account.

This configuration is done by setting the impersonate attribute of the <identity> ele

ment of the Machine.config (for server-wide settings) or Web.config (for application-

or directory-specific settings) files. To enable impersonation of the client’s authenti

cated Windows account, or IIS’s IUSR_MachineName account for anonymous access,

add the following line to the <system.web> section of the Web.config file:

<identity impersonate="true" />

When IIS is configured for anonymous access, ASP.NET makes requests for system

resources using the IUSR_MachineName account. When a user authenticates directly

to IIS using a Windows logon, ASP.NET impersonates that user account. To enable

ASP.NET to impersonate a specific user account, regardless of how IIS authentication

is handled, add the following line to the <system.web> section of the Web.config file

and replace the DOMAIN, UserName, and Password attributes with the account logon

credentials:

<identity impersonate="true" userName="DOMAIN\UserName" password="Password"/>

Restricting Access to ASP.NET Web Applications, Files, and Folders

Authentication determines a user’s identity, whereas authorization defines what the

user might access. Before the .NET Framework, administrators controlled Web user

authorization entirely with NTFS permissions. Although NTFS permissions are still a

key part of configuring security for ASP.NET applications, these permissions are now

complemented by ASP.NET’s authorization capabilities. Authorization is now con

trolled with Web.config files, just like authentication. This enables authorization to

work with any type of authentication—even if the authorization doesn’t use the local

user database or Active Directory directory service that NTFS permissions are based

on. The use of Web.config files also makes copying file permissions between multiple

Web servers as easy as copying files.

In the sections that follow, you will learn how to restrict access according to user and

group names, to restrict access to specific files and folders using either a .config file or

file permissions, and to use impersonation in an ASP.NET application.

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

Restricting Access to Users and Groups

713

The default Machine.config file contains the following authorization information:

<authorization>

 <allow users="*"/>

</authorization>

Unless you modify this section of the Machine.config file, or override the

Machine.config file by adding this section to your application’s Web.config file, all

users permitted by your authentication configuration are allowed to interact with all

parts of your ASP.NET Web application. The <allow users=‖*‖> subsection of the

authorization section tells ASP.NET that all users who pass the authentication

requirements are allowed access to all ASP.NET content.

To configure an ASP.NET application to provide access only to the users Eric and Sam,

override the Machine.config security settings by editing the Web.config file in the root of

the ASP.NET application and add the following lines within the <system.web> section:

<authorization>

 <allow users="Eric, Sam"/>

 <deny users=‖*‖/>

</authorization>

The <allow> and <deny> subsections contain users and roles attributes. The users

attribute should be set to a list of user names separated by commas, an asterisk (*) to

indicate all authenticated or unauthenticated users, or a question mark (?) to indicate

anonymous users. If Windows authentication is used, the user names should match

names in the local user database or Active Directory directory service and need to

include a domain name (that is, DOMAIN\user for domain accounts or COMPUTER

NAME\user for local user accounts).

The roles element contains a comma-separated list of roles. When Windows authen

tication is used, roles correspond to Windows user groups. In this case, the names

must exactly match group names in the local user database or Active Directory. Pro

vide the domain name for groups in the Active Directory, but do not specify the com

puter name for local groups. For example, to specify the IT group in the CONTOSO

domain, use CONTOSO\IT. To specify the local users group, use Users.

If you are using Windows authentication, you must disable the roleManager element

in your Web.config file to use role security to authorize Windows user groups. The

roleManager element is disabled by default, so removing it from your Web.config file

714

Chapter 11 Implementing Authentication and Authorization

is sufficient to disable it. You can authorize Windows users with roleManager enabled,

but it must be disabled to authorize Windows groups.

Controlling Authorization for Folders and Files by Using .config Files

The previous techniques are useful for controlling user access to an entire ASP.NET

application. To restrict access to specific files or folders, add a <location> section to the

<configuration> section of the Web.config file. The <location> section contains its own

<system.web> subsection, so do not place it within an existing <system.web> section.

To configure access restrictions for a specific file or folder, add the <location> section

to your Web.config with a single section: path. The path section must be set to the rel

ative path of a file or folder; absolute paths are not allowed. Within the <location> sec

tion, include a <system.web> subsection and any configuration information that is

unique to the specified file or folder. For example, to require forms authentication for

the file ListUsers.aspx and restrict access to the user named admin, add the following

text to the <configuration> section of the Web.config file:

<location path="ListUsers.aspx">

 <system.web>

<authentication mode="forms">

<forms loginUrl="AdminLogin.aspx" protection="All"/>

</authentication>

<authorization>

<allow users="admin"/>

<deny users="*"/>

</authorization>

 </system.web>

</location>

When using multiple <location> sections, file and subfolders automatically inherit all

settings from their parents. Therefore, you do not need to repeat settings that are iden

tical to the parents’ configurations. When configuring authorization, inheritance has

the potential to lead to security vulnerabilities. Consider the following Web.config file:

<configuration>

 <system.web>

 <authentication mode="Windows" />

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

 <location path="Protected">

 <system.web>

 <authorization>

Lesson 2: Using Windows, Forms, Passport, and Anonymous Authentication

<allow roles="CONTOSO\IT" />

 </authorization>

 </system.web>

 </location>

</configuration>

715

In this example, there are actually three layers of inheritance. The first is the

Machine.config file, which specifies the default <allow users="*"/>. The second layer

is the first <system.web> section in the example, which applies to the entire application.

This setting, <deny users="?"/>, denies access to all unauthenticated users. By itself,

this second layer denies access to any user. However, combined with the

Machine.config file, this layer allows access to all authenticated users and denies

access to everyone else.

The third layer is the <location> section, which grants access to the CONTOSO\IT

group. However, this section also inherits the <deny users="?"/> and <allow

users="*"/> settings. Therefore, the effective settings for the Protected subfolder are

the same as for the parent folder: all authenticated users have access. To restrict access

to only users in the CONTOSO\IT group, you must explicitly deny access to users

who are not specifically granted access, as the following code demonstrates:

<location path="Protected">

 <system.web>

 <authorization>

 <allow roles="CONTOSO\IT" />

 <deny users="*" />

 </authorization>

 </system.web>

</location>

NOTE Using file permissions

You can also control access to files and folders by setting NTFS file permissions. However, file per

missions are typically managed by systems administrators. Additionally, because file permissions

cannot be distributed as easily as a Web.config file and they can only be used with Windows secu

rity, they should not be relied upon as the primary method of file authorization for developers.

Lab: Controlling Authorization in ASP.NET Applications

In this lab, you modify an ASP.NET Web application to use Windows authentication.

� Exercise: Create a Web site that uses ASP.NET memberships

In this exercise, you update a previously created ASP.NET Web site to disable role

manager and use Windows authentication instead.

716

Chapter 11 Implementing Authentication and Authorization

1. Continue working with the Web site you created in Lesson 1, Exercise 2, which

has been configured to support ASP.NET membership and has users and roles

added to the database. Alternatively, you can open the completed Lesson 1,

Exercise 2 project from the CD.

2. On the Website menu, select ASP.NET Configuration.

3. Click the Security tab, and then click Select Authentication Type.

4. Click From A Local Network, and then click Done.

5. In Visual Studio, examine the Web.config file. Notice that the authentication ele

ment has been removed, which means forms authentication is no longer

enabled. Now remove the <roleManager> element so that the roles element refers

to Windows groups, instead of the roles you added using role manager.

6. In Visual Studio, add a LoginName control to the Default.aspx page. This enables

you to see the user account you are using to access the Web site.

7. With the Default.aspx page still open, press Ctrl+F5 to open the page in a

browser. Notice that the LoginName control shows that you are automatically

logged in using your Windows user account.

8. Click the Members Only link. If your current account is a member of the local

Users group, you are allowed to access the page. Otherwise, ASP.NET denies you

access.

9. Click the Administrators Only link. If your current account is a member of the

local Administrators group, you are allowed to access the page. Otherwise,

ASP.NET denies you access.

10. On the Website menu of Visual Studio, select ASP.NET Configuration. Click the

Security tab. Notice that you can no longer use the Web Site Administration Tool

to manage roles. When role manager is disabled, ASP.NET uses Windows groups

as roles. Therefore, you must manage the groups using tools built into Windows,

such as the Computer Management console.

11. On the Security tab of the Web Site Administration Tool, click Manage Access

rules. Then click the Admin subfolder. Notice that it displays the existing rules.

Click Add New Access Rule and notice that you can add a rule for specific users,

all users, or anonymous users. You cannot, however, add rules to grant access to

roles, because role manager has been disabled. To add access rules for Windows

Groups using roles, you must manually edit the <authorization> section of the

Web.config files

